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Preface

This redbook describes how to write reliable AIX daemons. It covers the
reasons for having high reliability in the daemon processes, and it describes
techniques for achieving the required reliability through using a standard set of
routines that remove many reliability considerations from the concerns of the
person who writes the daemon. The document includes discussions of how the
required reliability is achieved when the daemons are controlled by the various
resources available to perform the control task in AIX.

This redbook is valuable for administrators, program designers, and daemon
writers who need to originate or understand daemon logic.

Several practical examples are presented as implementations of the techniques
described. Examples of using standard routines to achieve the required
reliability are provided.

The book assumes the reader is familiar with UNIX commands, UNIX system
calls and C language programming. Some knowledge of network programming
is also assumed.

How This Redbook Is Organized
This redbook contains 414 pages. It is organized as follows:

• Chapter 1, “Introduction to the Redbook” provides an introduction and
“roadmaps” to the various chapters for those who need only a subset of the
topics included.

• Chapter 2, “UNIX Implementations and Standards” provides some
information about UNIX implementations and standards. The information in
this chapter is important, since several issues facing a daemon are
influenced by the history of UNIX implementations and standards.

• Chapter 3, “Daemon Initialization” describes how a daemon can be coded to
initialize itself properly, regardless of how it is started.

• Chapter 4, “Managing a Daemon with the init Process” describes the init
configuration file, /etc/inittab, and how entries in the file control what
daemons are started when the system is booted or changes run levels.

• Chapter 5, “Managing a Daemon with the SRC” describes how a daemon is
managed by the System Resource Controller (SRC). Section 5.1, “The SRC
Commands” on page 50 provides an introduction to the SRC commands
made available to the system administrator. Section 5.2, “Subsystem
Definition” on page 62 explains how a daemon is defined as an SRC
subsystem. Section 5.4, “Subsystem Failure, Respawning, and Notification”
on page 73 provides an introduction to the facilities available in the SRC to
recover from the abnormal termination of a subsystem. Section 5.6,
“Programming for the SRC in a Daemon” on page 84 describes the coding
changes that may be needed for a daemon to be placed under SRC control.
Finally, section 5.7, “Programming an SRC Notification Method” on page 126
provides information about writing an SRC notification method.

• Chapter 6, “Managing a Daemon with the Internet Superserver” describes
the inetd configuration file, /etc/inetd.conf, and how entries in the file
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determine how daemons behave under inetd control. The chapter also
describes the relationships between inetd and the SRC on AIX systems.
Finally, the chapter includes information about inetd daemons and
controlling terminals.

• Chapter 7, “Signal Handling” discusses many reliability issues associated
with signals. Daemons tend to be more sophisticated users of signals than
other types of processes, but improperly handling signals can lead to
reliability problems.

• Chapter 8, “AIX Paging Space Allocation” discusses the AIX paging space
allocation policies, and how daemons can avoid termination when the
system runs low on paging space.

• Chapter 9, “Ensuring Exclusivity” discusses how a daemon may enforce
whatever requirements it has with regard to exclusivity. For example, many
daemon programs will want to only allow one process to run the program at
any one time.

• Chapter 10, “Daemon Support Routines” describes the daemon support
routines provided as part of the this redbook. Many of the issues discussed
in this document are handled by the daemon support routines. Examples are
included in this chapter.

• Chapter 11, “SRC Notification Support Programs” describes programs and
shell scripts that are provided as part of this redbook to allow for consistent
SRC notification methods.

• Chapter 12, “New SRC Program Support” describes a model program that is
provided as part of this redbook that simplifies the task of creating a
program to send a subsystem-defined request to SRC subsystems.

• Appendix A, “Daemon Support Routines man Pages,” provides detailed
program instructions for the use of the Daemon Support Routines. The level
of detail is consistent with that commonly provided in UNIX systems man
pages.

• Appendix B, “SRC Notification Support Programs man Pages,” provides
detailed program instructions for the use of the SRC Notification Support
Programs. The level of detail is consistent with that commonly provided in
UNIX systems man pages.

• Appendix C, “Loading the Diskette,” tells how to use the supplied diskette to
create files that contain the text of figures in this redbook, the source code
for the daemon support routines, the source code for the SRC notification
support programs, and the source code for a model program that sends
subsystem-defined requests to an SRC-controlled daemon.
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Chapter 1. Introduction to the Redbook

This redbook is an adaptation of a document specifying guidelines for developing
reliable daemons in the Scalable POWERparallel Systems organization, a
development group within the IBM RS/6000 Division. The redbook includes any
sections of that document that will enable the reader to understand the
recommendations made by the guidelines. The redbook should help the reader
develop reliable daemons.

This chapter states the assumptions made by the redbook, describes the
reasons for using a set of standard daemon support routines (provided with the
redbook) that can be used to support the recommendations, and identifies
chapters that apply to particular types of daemons.

1.1 Assumptions and Disclaimers
This document assumes the reader is familiar with using a UNIX system and with
programming C language programs to run on a UNIX system. It assumes that
the reader is familiar with the C standard library and with the system calls
provided by a UNIX system for a C language program (for example, familiarity
with the standard I/O routines; system calls such as open, read, write, close,
signal, select, fork, wait, and waitpid and familiarity with the exec family of
routines). An excellent text on the programming environment provided by UNIX
systems is Advanced Programming in the UNIX Environment by W. Richard
Stevens (1992, Addison-Wesley Publishing Company).

This document assumes the reader is familiar with network programming. An
excellent text on network programming is UNIX Network Programming by W.
Richard Stevens (1990, Prentice Hall, Englewood Cliffs).

When discussing the use of system routines in daemon programs, this document
concentrates on providing working examples. Little attempt is made to describe
the syntax or the full semantics of the system routines used. It is assumed that
the reader will refer to the man pages in AIX Version 4.1: Technical Reference
Volume 1, SC23-2614 and AIX Version 4.1: Technical Reference Volume 2,
SC23-2615, as necessary. Similarly, little attempt is made to describe the full
functionality of system commands used in the examples provided. The reader
should refer to AIX Version 4.1: Command Reference, SBOF-1851, as needed.

Unless specified otherwise, references to AIX in this document are intended to
be references to AIX 4.1.2. Statements made in this document about AIX may or
may not apply to other versions of AIX.

This document includes many source code examples. Some examples are
complete, and can be compiled and run as presented. Other examples are code
fragments that would require modifications before they could be compiled and
executed. Every effort has been made to make the examples error-free.

The purpose of the code examples presented in this document is to illustrate
how to write reliable daemons. The examples might not follow other
recommended techniques. For instance, the Scalable POWERparallel Systems
organization places message numbers in the text of messages to facilitate
reference to message documentation. Messages are also placed in message
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catalogs, allowing easier translation to different languages. If these techniques
were used in the examples, the principles of the examples would be less clear.

1.1.1 RS/6000 SP Considerations
The information presented in this redbook applies to any RS/6000 running AIX.
However, since the redbook is adapted from a document written in the Scalable
POWERparallel Systems organization, the RS/6000 SP system is discussed
occasionally. The following information is sufficient to understand those
discussions:

• The RS/6000 SP is a collection of nodes. Each node is an RS/6000 with its
own processors, memory, and disks. Each node runs the AIX operating
system. Nodes may communicate efficiently over a high-speed switch.

• The nodes of an RS/6000 SP may be used to run parallel programs, serial
programs, batch jobs, and interactive jobs.

• The nodes of an RS/6000 SP are managed from a single location. This is a
separate RS/6000, known as the control workstation, connected to the
RS/6000 SP.

• Software known as the PSSP (IBM Parallel System Support Programs for
AIX) allows the system administrator to manage the RS/6000 SP.

• Using the PSSP, an RS/6000 SP system can be partitioned. Each node
belongs to a single partition. Each partition can be managed as though it is
an independent RS/6000 SP system.

1.2 How Daemons Are Managed: A Brief Introduction
For the purposes of this redbook, a daemon is defined to be a process that is
intended to run “in the background” without a controlling terminal. That is, the
life span of the daemon process does not depend on the life span of a terminal
session, the daemon life span does not depend on any control key sequences
generated from a terminal session, and a daemon does not interact with users
through a terminal. Note that this definition of a daemon does not depend on
how the daemon was started. A daemon can be started by the init process, the
System Resource Controller, the inetd process, or a shell.

Some daemons wait for requests from client processes, then satisfy those
requests, while other daemons periodically monitor the status of a system; some
daemons combine both functions. It is common for a daemon to start when a
system is booted, although that is not necessary. Once a daemon is started, it
will usually continue to run until the system is shut down, although it may
terminate before that time.

Traditionally, the init process starts a daemon when the system is booted. A
configuration file or a shell script tells the init process which daemons to start.
When a configuration file is used, that file may instruct the init process to start
a daemon directly, or it may instruct the init process to run a shell script, which
in turn may start one or more daemons.

Once started, a daemon may spend most of its time waiting to receive a request
from a client. The mechanism through which the daemon receives requests
from clients depends on the implementation of the daemon; typical mechanisms
include TCP/IP, UDP/IP, Berkeley sockets, and System V message queues.
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A daemon may be designed to support multiple clients simultaneously, or only
one at a time.

If the daemon supports only one client at a time, it is typically implemented as
an iterative server. In the iterative server model, the daemon process receives
a request from a client, processes that request for the client (which may involve
several messages being passed between client and server), and then waits for
the next request from the next client. While processing a request for one client,
other client requests are not processed. Iterative servers often communicate
with their clients through UDP/IP.

If the daemon supports multiple clients simultaneously, it is typically
implemented as a concurrent server. In the concurrent server model, the
daemon process waits for a request for service from a new client. When such a
request is detected, the daemon process creates a child process whose
responsibility is to handle the request from that specific client1. Once the child
process has been created, the daemon process waits for the next request for
service from another client. Multiple child processes can be running
simultaneously, with each process servicing a unique client. A child process will
terminate once the requests from its particular client have been satisfied.
Concurrent servers often communicate with their clients through TCP/IP.

It has been observed that many daemon processes using the socket interface for
network programming with TCP/IP and UDP/IP used similar code to wait for
requests from new clients. As a result, the Internet Superserver (inetd) was
written. The inetd process is a daemon started at system boot time. The inetd
daemon waits for requests for service provided by many servers. When a
request comes in for a particular type of service, the inetd daemon may handle
the request itself, or it may create a child process to handle the request. The
child process runs the daemon designed to provide the particular service. When
a daemon is placed under inetd control, it does not have to contain code that
waits for new clients; in fact, it should not wait for new clients. The daemons
that run under inetd control are described to inetd in a configuration file. These
daemons may be designed as iterative servers or concurrent servers. The
information provided to inetd about a daemon indicates if multiple instances of
the daemon should run concurrently. For iterative servers, inetd is told to allow
only one instance of the daemon at any time. For concurrent servers, inetd is
told to allow multiple instances. A concurrent server under inetd control does
not have to create child processes to allow for the concurrent processing of
requests from multiple clients; inetd provides that function.

System administrators might influence the behavior of a running daemon by
sending signals to it. Daemons often install signal handlers for specific signals.
For example, it is common for a daemon to install a signal handler for the SIGHUP
signal that would cause the daemon to reread its configuration file. Anytime the
system administrator wants the daemon to reread its configuration file, the
process identifier (PID) of the daemon is determined using the ps command, and
the SIGHUP signal is sent to the process identified by that PID with the kill
command. If the system administrator mistakenly used an incorrect PID in the
kill command, the SIGHUP signal might be sent to some other running process.
If that process had not changed the disposition of the SIGHUP signal from the

1 This a common implementation of a concurrent server involving multiple processes. It is also possible to implement a
concurrent server using only one process.
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default behavior, the process would terminate. A system administrator might
also send the SIGTERM signal to a daemon to have it terminate gracefully.

On AIX, a new mechanism was introduced to control daemons; this new
mechanism improves the ability of system administrators to influence daemon
behavior. The new mechanism is the System Resource Controller (SRC). When
a daemon is under the control of the SRC, SRC commands can be used by the
system administrator to influence the behavior of the daemon. For example, one
command can be used to cause the daemon to reread its configuration file.
Another command can be used to get status from the daemons under SRC
control. Yet another command can be used to request that a daemon terminate
gracefully. These commands are generally safer and easier to use than the ps
and kill commands. It is less likely that a system administrator′s mistake will
terminate a process unintentionally.

A daemon that is started directly by init, from a shell script, or from the
command line can be changed to run under the control of the SRC. When put
under the control of the SRC, the daemon is started by the SRC, but the request
to start the daemon can still come from init, a shell script, or the command line.
In addition to the benefits described previously, putting a daemon under the
control of the SRC provides the following benefits:

• The SRC can be instructed to respawn the daemon if it terminates
abnormally. This is similar to the capability of the init process to respawn a
daemon that it directly started. However, under the SRC, even daemons that
were started in response to a request from a shell script or a shell command
line can be respawned.

• When a daemon running under the SRC terminates abnormally, the SRC
writes an entry in the AIX error log. The entry identifies the daemon that
terminated, and includes the exit status of the daemon process. An entry for
a daemon not under SRC control is only placed in the AIX error log when the
process generates a core file.

• When a daemon is put under SRC control, an SRC notification method can
be associated with the daemon. If such a daemon terminates abnormally,
and the SRC is not instructed to respawn the daemon, the notification
method is executed by the SRC. The notification method can be any
executable program or shell script. It receives the name of the daemon as a
parameter. The notification method can start recovery actions for the
daemon and take notification actions. The notification method of a daemon
is also executed if the daemon cannot be respawned properly.

• The SRC can be instructed whether multiple instances of a particular
daemon are permitted to run on a system at the same time. If multiple
instances of a daemon are not allowed, an attempt to start a second instance
of the daemon with the SRC will result in an error message.

• The SRC can be instructed which files should be associated with the
standard input, standard output, and standard error of the daemon. The SRC
makes these associations without the danger of establishing a controlling
terminal for the daemon2.

2 On AIX, a daemon started by init can have files associated with the standard input, standard output, and standard error of a
daemon. However, init does not prevent such an association from establishing a controlling terminal for the daemon.
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• The SRC can be given a default set of arguments with which a particular
daemon is always started. These arguments will be provided to the daemon
even when the system administrator tells SRC to start the daemon from a
shell command line. When a daemon is started through the SRC, additional
arguments can be specified. The daemon will receive the default arguments
and the additional arguments.

• The SRC can be instructed to start a daemon with a particular priority.

• The SRC can be instructed to run a daemon in a process associated with a
specific user ID.

• Daemons under SRC control can be defined in groups. A single SRC
command can be applied to all daemons in a group.

1.3 Reasons for Using a Set of Standard Daemon Support Routines
This redbook provides a documented set of routines intended to lessen the effort
required for daemon writers and maintainers to follow the guidelines presented.
The routines are designed to be general enough to be useful to a daemon
started by the System Resource Controller (SRC), the init process, the Internet
Superserver (inetd), or a shell command. The routines implement the
procedures recommended in this redbook. They implement most of what is
needed to allow signal, message queue, or socket communication between the
SRC and a daemon. They implement methods to protect a daemon from
termination during a low paging space situation. They also support a method for
allowing a daemon to enforce its exclusivity requirements.

These routines are referred to as the daemon support routines. Their use is
illustrated in Chapter 10, “Daemon Support Routines” on page 245. The
interfaces to the routines are specified in Appendix A, “Daemon Support
Routines man Pages” on page 315.

When this document discusses a particular topic, it will also indicate how the
daemon support routines support the daemon writer in dealing with the issues
related to the topic.

A daemon writer can develop a reliable daemon without the daemon support
routines. However, it is hoped that the routines will enjoy widespread use
because they help the daemon writer concentrate on the unique function
provided by the daemon, instead of the general implementation overhead of
writing a daemon.

1.4 Chapter Road Maps
A daemon programmer does not need to read this entire document to develop a
reliable daemon. This section provides some road maps to guide the
programmer through the sections that apply to his daemon. Certain chapters
only apply to daemons that will be placed under the control of the SRC. Other
chapters only apply to daemons placed under the control of the inetd process.
Some chapters may apply to a daemon regardless of whether it is under the
control of the SRC or the inetd process.
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1.4.1 Chapters Applicable to All Daemons
The following chapters may apply to any daemon:

• Chapter 2, “UNIX Implementations and Standards” on page 9

• Chapter 7, “Signal Handling” on page 141

The following chapters may apply to any daemon that does not utilize the
daemon support routines:

• Chapter 3, “Daemon Initialization” on page 19

• Chapter 8, “AIX Paging Space Allocation” on page 203

• Chapter 9, “Ensuring Exclusivity” on page 231

Chapter 10, “Daemon Support Routines” on page 245 applies to any daemon
utilizing the daemon support routines. The issues related to daemon
initialization are dealt with by the dae_init routine and other routines with the
dae_init_ prefix. The issues related to the AIX paging space allocation policies
are dealt with by the dae_init_psalloc, dae_init_lowps, and dae_init routines.
The issues related to daemon exclusivity are dealt with by the
dae_init_exclusive and dae_init routines.

1.4.2 Chapters Applicable to SRC Controlled Daemons
The following sections may be helpful when placing a daemon under SRC
control:

• Chapter 4, “Managing a Daemon with the init Process” on page 45, if the
SRC controlled daemon is to be started when the system is booted.

• 5.1, “The SRC Commands” on page 50, for an understanding of how SRC
commands are used to control an SRC subsystem.

• 5.2, “Subsystem Definition” on page 62, to understand how the daemon can
be defined as an SRC subsystem.

• 5.3, “Subsystem User ID” on page 68, to understand the limitations of the
users under which an SRC subsystem may run.

• 5.4, “Subsystem Failure, Respawning, and Notification” on page 73, to
understand how the daemon may be respawned by the SRC.

• 5.5, “Subsystem Groups” on page 83, for a discussion concerning subsystem
groups.

• 5.6, “Programming for the SRC in a Daemon” on page 84, to understand the
changes needed in the daemon code. This section is only required if the
daemon support routines will not be used.

• Chapter 10, “Daemon Support Routines” on page 245, to understand how to
use the daemon support routines to allow the daemon to operate under SRC
control.

If a daemon will take advantage of the SRC notification capabilities, the following
sections may be helpful:

• 5.7, “Programming an SRC Notification Method” on page 126

• Chapter 11, “SRC Notification Support Programs” on page 295
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If a daemon under SRC control will support a subsystem-defined SRC request (a
request delivered to a subsystem by the SRC, but not defined by the SRC),
Chapter 12, “New SRC Program Support” on page 303 may be helpful.

1.4.3 Chapters Applicable to inetd Controlled Daemons
For a daemon to be placed under the control of inetd, Chapter 6, “Managing a
Daemon with the Internet Superserver” on page 129 should be helpful.
Particular attention should be paid to the sections describing the interaction
between inetd and the SRC on an AIX system. Section 6.5, “Programming a
Daemon under inetd Control: A Word of Caution” on page 139 is important if the
daemon support routines will not be used. Of course, if the daemon support
routines will be used, Chapter 10, “Daemon Support Routines” on page 245 is
important.
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Chapter 2. UNIX Implementations and Standards

UNIX systems have evolved within two major branches: the branch of
development started within AT&T Bell Laboratories, and the branch of
development within the University of California at Berkeley. Recent systems
developed within the AT&T branch are referred to as releases of System V.
Recent systems developed within the Berkeley branch are identified with names
like 4.xBSD, such as 4.3BSD and 4.4BSD3. BSD systems owe their origin to the
predecessors of System V, resulting in many similarities between the two
branches. However, many differences have developed.

Differences in the major branches of UNIX systems inspire attempts at
standardization. The goal of the standards bodies is to standardize some subset
of UNIX systems, allowing for more portability of code and skills among various
UNIX systems. UNIX-related standards have different scopes. The standards
most relevant to this document are:

• The ANSI C standard

• The IEEE POSIX standards

• The X/Open standards

The ANSI C standard, produced by the American National Standards Institute,
standardizes the definition of the C language and a set of C library routines. The
goal of the standardization is to allow code to be written in C and ported among
operating systems supporting ANSI C. These systems are not limited to UNIX
systems.

The IEEE (Institute of Electrical and Electronics Engineers) produces the POSIX
(Portable Operating System Interface for Computer Environments) standards.
The POSIX standards describe the features that must be present in an operating
system for it to claim to be “POSIX compliant.” The POSIX standards are
inspired by UNIX systems, but non-UNIX systems have also complied with some
of the standards4. The POSIX standard of most importance to programmers is
POSIX 1003.1. POSIX 1003.1 defines operating system interfaces available to an
application programmer. This is the standard that standardizes such system
calls as fork. In many ways, the POSIX 1003.1 standard can be thought of as a
superset of the ANSI C standard.

X/Open produces standards that are supersets of the POSIX standards. Issues
of X/Open standards that are relevant to this document are XPG3 and XPG4.
Recently, the X/Open Company obtained the UNIX trademark. As a result, the
most recent version of XPG4 (Issue 4, Version 2) includes many routines from
System V that were not previously included. Version 2 of XPG4 allows a system
to claim either BASE conformance or X/OPEN UNIX conformance. The criteria
specified for X/OPEN UNIX conformance includes the System V additions just
mentioned.

The importance of standards relates to portability. If a program is implemented
solely within the specification of a standard, it should be easily ported to another

3 BSD stands for “Berkeley Software Distr ibution.”

4 IBM ′s MVS Open Edition complies with at least one of the POSIX standards.
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system claiming conformance to that standard. The smaller the scope of a
standard, the more portable an application written to that standard is. The
larger the scope of a standard, the easier it is to write an application written to
that standard.

UNIX implementations that claim conformance to these standards are not usually
limited to the facilities specified in the standards. For example, AIX 4.1 conforms
to, among other standards, POSIX 1003.1 and XPG4. However, AIX is not limited
by these standards. For example, AIX 4.1 supports Berkeley sockets; sockets
are not specified by any of these standards.

2.1 Standards and AIX
UNIX implementations that claim conformance to standards usually have
histories that affect their externals. For example, AIX is based on the System V
branch of UNIX development. So, it tends to support System V methods for
doing things, in addition to the standard methods. However, AIX has also
included BSD features to allow BSD programs to be ported to AIX. As a result,
there can be three or more routines designed to accomplish the same function in
AIX. To add to the confusion, these different routines sometimes have the same
name. For example, on AIX, a program can install a signal handler with the
System V signal routine, the BSD signal routine, the System V sigset routine,
the AIX sigset routine, the BSD sigvec routine, and the POSIX and X/Open
sigaction routine.

When AIX provides different versions of a routine with the same name, it
supports the versions in different libraries. Routines with different origins are
found in the libc.a library: routines specified in standards, routines from System
V, and many BSD routines that are unique to BSD. Routines that are BSD
variants of routines in the libc.a library are found in the libbsd.a library. A
routine in the libbsd.a library may have a different interface than the same
routine in the libc.a library, or a routine in the libbsd.a library may have the
same interface, but the behavior may differ. Some libbsd.a routines may differ
in both interface and behavior. For example, AIX supports two versions of the
fcntl routine. The libbsd.a routine supports making a socket file descriptor
non-blocking, while the libc.a routine does not provide that support.

On AIX, a programmer should determine whether his program requires BSD
behavior. This decision is often easy to make. The AIX man page for a function
being used may indicate that BSD functionality should be compiled into the
program when using a function. For instance, if the program uses sockets, BSD
behavior is required. If BSD behavior is required, the program should be
compiled with the _BSD macro defined to 43 or 44. The 43 value specifies 4.3BSD
behavior; the 44 value specifies 4.4BSD behavior. When the program is linked, it
should be linked such that the libbsd.a library is searched before the libc.a
l ibrary. For example, you can create a program named example that will exhibit
BSD behavior by compiling a source file named example.c with a command
similar to that shown in Figure 1 on page 11. Using xlc causes an ANSI C
compiler to be used. The -D_ALL_SOURCE flag allows AIX extensions to be used in
the program. The -D_BSD=44 flag indicates BSD behavior is desired. The -lbsd
flag causes the libbsd.a library to be searched in the link step. The libc.a
library is searched by default, after the libraries explicitly listed on the command
line.
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$ xlc -O -D_ALL_SOURCE -D_BSD=44 -lbsd -o example example.c

Figure 1. Compiling on AIX When BSD Behavior Is Required

When a program is linked with the libbsd.a library, some surprises may occur.

For example, if a program is linked with libbsd.a for BSD socket support, and
the program calls the sleep function, the sleep function will execute with BSD
behavior. The standard version of sleep in libc.a returns the number of
seconds not slept5. However, the BSD version of sleep does not return any
meaningful value; any value returned should be ignored.

The program in Figure 2 on page 12 takes as a parameter, the number of
seconds to delay. It loops through calls to the sleep function to accomplish this.
If the program does not receive a SIGINT signal while blocked in the sleep
function, only one call to sleep is required. If the SIGINT signal interrupts the
sleep function, the function is called again to attempt to delay the remaining
time.

In the example shown in Figure 3 on page 13, two versions of the program are
created. The delay program calls the libc.a version of sleep. The delay_bsd
program calls the libbsd.a version of sleep. As the example shows, delay can
process SIGINT signals and delay for the proper amount of time. However,
delay_bsd does not delay for the proper amount of time when sleep is interrupted
by the SIGINT signal.

5 The sleep function may return before the specified number of seconds, due to the delivery of a signal to the process.
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#include <unistd.h>
#include <stdio.h>
#include <signal.h>
#include <sys/times.h>

void sig_handler(int signo)
{

return;
}

int main(int argc, char **argv)
{

int delay_time, ticks_per_sec;
struct sigaction sa;
clock_t start_time, end_time;
struct tms start_tms, end_tms;

if (argc != 2) {
exit(1);

}

delay_time = atoi(argv[1]);

ticks_per_sec = sysconf(_SC_CLK_TCK);

sa.sa_handler = sig_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;

(void) sigaction(SIGINT, &sa, NULL);

start_time = times(&start_tms);

while (delay_time > 0) {
delay_time = sleep(delay_time);

}

end_time = times(&end_tms);

printf(″Sleep loop lasted %d seconds.\n″ ,
(end_time - start_time) / ticks_per_sec);

return 0;
}

Figure 2. Source for the delay and delay_bsd Programs
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$ xlc -O -D_ALL_SOURCE -o delay delay.c
$ xlc -O -D_ALL_SOURCE -D_BSD=44 -lbsd -o delay_bsd delay.c

$ ./delay 10
^C^C^C^C^C^C^CSleep loop lasted 10 seconds.

$ ./delay_bsd 10
^CSleep loop lasted 2 seconds.

Figure 3. Compiling and Executing the delay and delay_bsd Programs

On AIX systems, libbsd.a and libc.a are shared libraries. When a program
calls a routine in a shared library, the program′s loader area indicates where the
routine can be found. The dump command can be used with the -n and -v flags to
find out how external references to shared libraries are resolved. In Figure 4,
the dump command shows that the delay program uses the sleep function in
libc.a. In Figure 5 on page 14, the dump command shows that the delay_bsd
program uses the sleep function in libbsd.a.

$ dump -nv delay

delay:

***Loader Section***
Loader Header Information

VERSION# #SYMtableENT #RELOCent LENidSTR
0x00000001 0x0000000a 0x00000014 0x0000001e

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL
0x00000002 0x00000200 0x0000001a 0x0000021e

***Import File Strings***
INDEX PATH BASE MEMBER
0 /usr/lib:/lib
1 libc.a shr.o

***Loader Symbol Table Information***
[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP RW EXTref libc.a(shr.o) errno
[1] 0x00000000 undef IMP DS EXTref libc.a(shr.o) exit
[2] 0x00000000 undef IMP DS EXTref libc.a(shr.o) atoi
[3] 0x00000000 undef IMP DS EXTref libc.a(shr.o) sysconf
[4] 0x00000000 undef IMP DS EXTref libc.a(shr.o) sigemptyset
[5] 0x00000000 undef IMP DS EXTref libc.a(shr.o) sigaction
[6] 0x00000000 undef IMP DS EXTref libc.a(shr.o) times
[7] 0x00000000 undef IMP DS EXTref libc.a(shr.o) sleep
[8] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[9] 0x00000010 .data ENTpt DS SECdef [noIMid] __start

Figure 4. Display of Loader Section of the delay Program
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$ dump -nv delay_bsd

delay_bsd:

***Loader Section***
Loader Header Information

VERSION# #SYMtableENT #RELOCent LENidSTR
0x00000001 0x0000000a 0x00000014 0x0000002e

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL
0x00000003 0x00000200 0x0000001a 0x0000022e

***Import File Strings***
INDEX PATH BASE MEMBER
0 /usr/lib:/lib
1 libc.a shr.o
2 libbsd.a shr.o

***Loader Symbol Table Information***
[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP RW EXTref libc.a(shr.o) errno
[1] 0x00000000 undef IMP DS EXTref libc.a(shr.o) exit
[2] 0x00000000 undef IMP DS EXTref libc.a(shr.o) atoi
[3] 0x00000000 undef IMP DS EXTref libc.a(shr.o) sysconf
[4] 0x00000000 undef IMP DS EXTref libc.a(shr.o) sigemptyset
[5] 0x00000000 undef IMP DS EXTref libc.a(shr.o) sigaction
[6] 0x00000000 undef IMP DS EXTref libc.a(shr.o) times
[7] 0x00000000 undef IMP DS EXTref libbsd.a(shr.o) sleep
[8] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[9] 0x00000010 .data ENTpt DS SECdef [noIMid] __start

Figure 5. Display of Loader Section of the delay_bsd Program

2.2 Writing Programs for Portability
When writing programs that may be ported to other systems, it is helpful to
assume a certain standard as a base. As the program is written, try to limit
yourself to the features of the standard you have chosen as the base. If certain
features that are not included in the standard are to be used when the program
is compiled on specific systems, conditional compilation can be used.

Take the daemon support routines as an example of this strategy. When
compiled on an AIX system, the routines will support use of the SRC. When
compiled on a non-AIX system, the routines will not support use of the SRC.
This can be managed through the preprocessor. The code fragment in Figure 6
on page 15 looks for the definition, or at the values of, several preprocessor
manifest constants to determine the type of system on which it is being
compiled. The code recognizes the following:

• The C compiler on AIX systems defines the manifest constant _AIX.

• If a program requires BSD behavior on AIX systems, the _BSD manifest
constant must be defined.
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• If a system meets the requirements specified for XPG4 X/OPEN UNIX
conformance, the _XOPEN_UNIX manifest constant must be defined with a
value other than -1.

• If a system complies with XPG4, the _XOPEN_VERSION manifest constant must
be defined with a value of 4.

• If a system complies with XPG3, the _XOPEN_VERSION manifest constant must
be defined with a value of 3.

• If a system supports POSIX job control, the _POSIX_JOB_CONTROL manifest
constant must be defined.

#include <unistd.h>
#include <signal.h>

/*
 * Macros to determine the type of system the code is running on.
 */

#define DAE_SYS_AIX_BSD 1 /* AIX with BSD compatibility */
#define DAE_SYS_AIX 2 /* AIX without BSD compatibility */
#define DAE_SYS_XOPEN_UNIX 3 /* X/OPEN UNIX with job control */
#define DAE_SYS_XOPEN_JOB 4 /* X/OPEN BASE with job control */

#if defined(_AIX)

 #if !defined(_ALL_SOURCE)
#error ″daemon support code requires _ALL_SOURCE on AIX″

#endif
#if defined(_BSD)

#define DAE_SYS DAE_SYS_AIX_BSD
#else

#define DAE_SYS DAE_SYS_AIX
#endif

#else

#if defined(_XOPEN_UNIX) && (_XOPEN_UNIX != -1)
#define DAE_SYS DAE_SYS_XOPEN_UNIX

#elif defined(_XOPEN_VERSION) && (_XOPEN_VERSION >= 3) && \
defined(_POSIX_JOB_CONTROL)
#define DAE_SYS DAE_SYS_XOPEN_JOB

#else
#error ″daemon support code only implemented for at least XPG3

systems with job control″
#endif

#endif

Figure 6. Determining the Type of System

The daemon support routines assume a XPG3-compliant system that supports
POSIX job control as a base. Therefore, if the system on which the code is being
compiled does not meet these assumptions, the #error directive is used to
generate an error message. The code fragment in Figure 6 sets DAE_SYS to a
value that represents the type of system on which the code is compiled. In turn,
the code fragment in Figure 7 on page 16 uses the value of DAE_SYS to determine
whether or not to define other manifest constants. Each of these manifest
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constants has a specific meaning to the daemon support routines. For example,
if DAE_SRC_SUPPORT is defined, the daemon support routines will compile with code
designed to support running a daemon under the SRC; if DAE_SRC_SUPPORT is not
defined, the daemon support routines will not include the code designed to
support the SRC. Notice that DAE_SRC_SUPPORT is only defined if the code is being
compiled on an AIX system.

/*
 * Set macros indicating support for inetd, SRC, and SRC with sockets.
 */
#if (DAE_SYS == DAE_SYS_AIX_BSD)

#define DAE_INETD_SUPPORT /* Supporting inetd */
#define DAE_SRC_SUPPORT /* Supporting SRC */
#define DAE_SRC_SOCK_SUPPORT /* Supporting SRC with sockets */
#define DAE_PSALLOC_SUPPORT /* Supports AIX paging space alloc.*/
#define DAE_FCNTL_CLOSE_SUPPORT /* Supports fcntl F_CLOSEM */
#define DAE_NOTTY_IOCTL_SUPPORT /* Supports ioctl TIOCNOTTY */
#define DAE_IGN_ZOMBIES_SUPPORT /* Supports ignoring zombies */

#elif (DAE_SYS == DAE_SYS_AIX)
#undef DAE_INETD_SUPPORT /* Not supporting inetd */
#define DAE_SRC_SUPPORT /* Supporting SRC */
#undef DAE_SRC_SOCK_SUPPORT /* Not supporting SRC with sockets */
#define DAE_PSALLOC_SUPPORT /* Supports AIX paging space alloc.*/
#define DAE_FCNTL_CLOSE_SUPPORT /* Supports fcntl F_CLOSEM */
#define DAE_NOTTY_IOCTL_SUPPORT /* Supports ioctl TIOCNOTTY */
#define DAE_IGN_ZOMBIES_SUPPORT /* Supports ignoring zombies */

#elif (DAE_SYS == DAE_SYS_XOPEN_UNIX)
#undef DAE_INETD_SUPPORT /* Not supporting inetd */
#undef DAE_SRC_SUPPORT /* Not supporting SRC */
#undef DAE_SRC_SOCK_SUPPORT /* Not supporting SRC with sockets */
#undef DAE_PSALLOC_SUPPORT /* Does not support AIX PSALLOC */
#undef DAE_FCNTL_CLOSE_SUPPORT /* Does not support fcntl F_CLOSEM */
#undef DAE_NOTTY_IOCTL_SUPPORT /* No support for ioctl TIOCNOTTY */
#define DAE_IGN_ZOMBIES_SUPPORT /* Supports ignoring zombies */

#elif (DAE_SYS == DAE_SYS_XOPEN_JOB)
#undef DAE_INETD_SUPPORT /* Not supporting inetd */
#undef DAE_SRC_SUPPORT /* Not supporting SRC */
#undef DAE_SRC_SOCK_SUPPORT /* Not supporting SRC with sockets */
#undef DAE_PSALLOC_SUPPORT /* Does not support AIX PSALLOC */
#undef DAE_FCNTL_CLOSE_SUPPORT /* Does not support fcntl F_CLOSEM */
#undef DAE_NOTTY_IOCTL_SUPPORT /* No support for ioctl TIOCNOTTY */
#undef DAE_IGN_ZOMBIES_SUPPORT /* No support for ignoring zombies */

#else
#error ″DAE_SYS not defined as expected″

#endif

Figure 7. Determining the Functions to Support

Figure 8 on page 17 shows other uses for DAE_SYS in the daemon support
routines. POSIX and X/OPEN define the getpgrp routine such that it takes no
parameters and returns the process group ID of the current process. Traditional
BSD systems defined getpgrp such that it takes one parameter, the PID of the
process whose process group ID is to be returned. On these systems, a value of
0 means the current process. The various definitions of DAE_GETPGRP deal with
these differences. The remainder of the daemon support code uses DAE_GETPGRP
to obtain the process group ID of the current process. The code fragment also
defines the macro DAE_IS_SESSION_LEADER. The easiest way to determine if a
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process is a session leader is to compare the return value of getsid with the
return value of getpid. However, systems that do not claim XPG4 X/OPEN UNIX
conformance may not provide a getsid routine. The definitions of the
DAE_IS_SESSION_LEADER macro deal with this.

/*
 * Set macro to get the process group ID of the current process.
 */
#if (DAE_SYS == DAE_SYS_AIX_BSD)

#define DAE_GETPGRP() getpgrp((pid_t)0)
#elif (DAE_SYS == DAE_SYS_AIX)

#define DAE_GETPGRP() getpgrp()
#elif (DAE_SYS == DAE_SYS_XOPEN_UNIX)

#define DAE_GETPGRP() getpgrp()
#elif (DAE_SYS == DAE_SYS_XOPEN_JOB)

#define DAE_GETPGRP() getpgrp()
#else

#error ″DAE_SYS not defined as expected″
#endif

/*
 * Set macro to determine if the current process is a session leader.
 */
#if (DAE_SYS == DAE_SYS_AIX_BSD)

#define DAE_IS_SESSION_LEADER() (getsid((pid_t)0) == getpid())
#elif (DAE_SYS == DAE_SYS_AIX)

#define DAE_IS_SESSION_LEADER() (getsid((pid_t)0) == getpid())
#elif (DAE_SYS == DAE_SYS_XOPEN_UNIX)

#define DAE_IS_SESSION_LEADER() (getsid((pid_t)0) == getpid())
#elif (DAE_SYS == DAE_SYS_XOPEN_JOB)

/*
* The setpgid() call below attempts to put this process in the
* process group to which it already belongs. If this fails because
* this process is a session leader, errno will be set to EPERM.
* Other conditions that would return EPERM do not apply for this
* specific process. Other failures should not happen.
*/
#define DAE_IS_SESSION_LEADER() \

((setpgid((pid_t)0, DAE_GETPGRP()) == -1) && (errno == EPERM))
#else

#error ″DAE_SYS not defined as expected″
#endif

Figure 8. Macro Definitions Depending on System Type
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Chapter 3. Daemon Initialization

There is a set of generally recognized rules for how a daemon process should
initialize itself. These rules are described in section 2.6, “Daemon Processes,”
in UNIX Network Programming, W. Richard Stevens, 1990, Prentice Hall,
Englewood Cliffs; and Chapter 13, “Daemon Processes,” in Advanced
Programming in the UNIX Environment, W. Richard Stevens, 1992,
Addison-Wesley Publishing Company.

UNIX Network Programming describes how the rules are traditionally
implemented in System V and BSD systems. This can be useful in
understanding the steps taken by existing daemons.

Advanced Programming in the UNIX Environment describes how to implement
the rules in a standards-compliant manner. This is useful for writing new
daemons, or converting existing daemons to use standard methods of daemon
initialization.

This section discusses the steps of daemon initialization, including AIX-specific
steps. Sometimes it may not be necessary for the daemon process to take all of
the steps discussed. For example, on AIX, if the process was started by the init
process, the process will already be a session leader of a session with no
controlling terminal. Unless otherwise noted, it is not harmful for a daemon to
take a step when it is not needed. If the daemon takes all the steps, it will be
more likely to behave correctly regardless of how it was started. Following all of
the steps will allow the process to behave correctly as a daemon, even if it was
started by a shell.

The initialization steps that should be taken in a daemon process are as follow:

 1. Determine how the daemon was started.

 2. Ignore terminal-generated signals.

 3. Migrate the daemon to another process, if appropriate.

 4. Disassociate the daemon from its controll ing terminal.

 5. Deal with non-terminal generated signals.

 6. Close unnecessary file descriptors.

 7. Ensure certain file descriptors are open.

 8. Change the current working directory.

 9. Set the process file mode creation mask.

3.1 Determine How the Daemon Was Started
A daemon program can be started in a variety of ways. The ways that are
significant for this discussion are:

• By the Internet Superserver (inetd)

• By the init process

• By the System Resource Controller (SRC)

• By a shell
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Some of the daemon initialization steps are only appropriate when the daemon
is started in a certain manner. For example, when a daemon is started by inetd,
init, or the SRC, it is not appropriate to migrate the daemon to another process.
When a daemon is started from a shell, it is appropriate to migrate the daemon
to another process. Therefore, it is necessary for the daemon to determine how
it was started. This is not as straightforward as it may first appear.

UNIX systems do not provide a straightforward, portable, reliable method for a
process to determine how it was started. For example, the PID of a daemon
process ′s parent process, obtainable with the getppid routine, is of limited use.
It is literally the PID of the current parent process of the daemon process. On
most UNIX systems, the PID of the init process is 1. Also, on most UNIX
systems, when a process terminates, any existing child processes of the
terminating process are inherited by the init process. Therefore, if a daemon
process determines that the PID of its parent process is 1, there are two possible
reasons. One possible reason is that the init process started the daemon
process. Another possible reason is the process that started the daemon
process terminated, and the daemon process was inherited by the init process.

Various daemons use different methods for determining how they were started.
Many of these methods make assumptions about how certain programs work. It
is common for a daemon to assume that it can only be started in certain ways; if
the daemon is started any other way, unintended results may occur.

The remainder of this section discusses how the daemon support code
determines how a daemon was started. The techniques are recommended as
fairly general and useful.

First, determine if the daemon was started by inetd. This should only be done
when the daemon is running on a system that supports inetd. The inetd
daemon may be supported on a system derived from 4.3BSD, or a later BSD
release. A system that does not support Berkeley sockets probably does not
support inetd.

When inetd starts another daemon, it sets up the standard input, standard
output, and standard error file descriptors of the daemon to refer to the socket
through which the daemon is to communicate with its client. Since it is unusual
for a process to start with its file descriptors in such a state, a process can
reasonably test these file descriptors to determine if it was started by inetd. See
the code in Figure 9 on page 21 for an example of this testing.

The is_an_inetd_process routine returns a constant value TRUE if the process
appears to have been started by inetd. Otherwise, it returns FALSE. The routine
attempts to get information about the sockets that might be associated with file
descriptors 0, 1, and 2. If getsockname returns with an errno value of EBADF, the
file descriptor under consideration is not open. If getsockname returns with an
errno value of ENOTSOCK, the file descriptor is open, but it is not associated with a
socket. In either case, inetd did not start the daemon. Other error values from
getsockname are serious errors, so processing is terminated.

If a socket address returned by getsockname is not in the Internet domain,
represented by the constant AF_INET, the daemon was not started by inetd,
because inetd only supports that domain. If all three file descriptors refer to
sockets with the same host addresses and the same port numbers, the daemon
was started by inetd. If different host addresses or port numbers are
encountered, the daemon was not started by inetd.
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#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int is_an_inetd_process(void)
{

int fd;
struct sockaddr_in sockaddr;
int sockaddrlen;
unsigned long addr;
unsigned short port;

for (fd = 0; fd <= 2; fd++) {

sockaddrlen = sizeof sockaddr;
if (getsockname(fd, (struct sockaddr *) &sockaddr,

&sockaddrlen) == -1) {
if ((errno == EBADF) || (errno == ENOTSOCK)) {

return FALSE;
} else {

abort(); /* daemon support code does not call abort */
}

}

if (sockaddr.sin_family != AF_INET) {
return FALSE;

}

if (fd == 0) {
addr = ntohl(sockaddr.sin_addr.s_addr);
port = ntohs(sockaddr.sin_port);

} else {
if ((addr != ntohl(sockaddr.sin_addr.s_addr)) ||

(port != ntohs(sockaddr.sin_port))) {
return FALSE;

}
}

}

return TRUE;

}

Figure 9. Determining If inetd Started the Daemon

If a daemon determines it was started by inetd, but it is not designed to perform
in that environment, the daemon should log an error message, and terminate
with an error code.

If the daemon was not started by inetd, the next step is to determine if the
daemon was started by the SRC. This should be done only when the daemon is
running on a system that supports the SRC, namely AIX systems. Unlike inetd,
the SRC does not leave every daemon it starts in a distinguishable state which
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would allow a daemon process to test for that state. So, to determine whether
SRC started a daemon, the daemon support routines get the PID of the
daemon ′s parent process, and use an AIX-specific method to determine if the
parent process is the SRC daemon, srcmstr. The AIX-specific method is to get
information about the process with the AIX getprocs routine. It is acceptable to
use a non-standard method here, since the code will only be compiled on AIX
systems. See Figure 10 on page 23 for the definition of the get_parent_info
routine, which uses getprocs. See Figure 11 on page 24 for the definition of the
is_parent_SRC routine, which calls get_parent_info, and then uses the returned
information to determine whether the parent of the daemon process is srcmstr.

If a daemon running on an AIX system determines it was not started by inetd
nor by the SRC, it might log an error message, and terminate with an error code.
This action is consistent with the practice that, on an AIX system, daemons
shipped by Scalable POWERparallel Systems, RS/6000 Division, are under the
control of inetd or the SRC. Daemons might decide not to follow this practice
when in debugging mode.

Note that if a daemon is started by the SRC, and the srcmstr process terminates
before the daemon determines how it was started, the daemon may not realize it
was started by SRC. This is an acceptable exposure. If the daemon process is
inherited by the init process before the daemon process calls the getppid
routine in get_parent_info, the daemon process will believe it was not started by
SRC, but by the init process. This ends up being acceptable. The daemon will
either terminate itself, or it will proceed. If it terminates itself, no harm is done.
If it proceeds under the assumption that it was started by the init process, it will
function correctly, except it will not respond to some requests made by SRC
system administration commands. No harm will be done. If the daemon process
is inherited by the init process after the getppid call is made in get_parent_info,
but before the getprocs call is made in the same routine, the daemon should
terminate. Again, no harm is done.

If a daemon was not started by inetd, nor started by the SRC, and it does not
terminate as a result (because it is not running on an AIX system, or it is running
on an AIX system in debug mode), it should determine if its current parent is the
init process. This can be done on most UNIX systems by calling the getppid
routine and comparing the returned PID to 1. If the PID of the current parent
process is 1, the daemon process was either started by the init process, or the
process that started it has terminated. If the original parent process was
srcmstr, it will be acceptable for the daemon process to continue under the
assumption it was started by init, as discussed above. If the original parent
process was a shell, proceeding under the assumption that the daemon was
started by the init process is also acceptable. In this case, the daemon process
may not be able to initialize itself, and therefore it will terminate6. It is also
possible it will be able to initialize itself, and continue to run. In either case, no
harm will be done.

6 If the process was started by a job control shell, it may be a process group leader. This may cause the attempt to
disassociate from the controlling terminal to fail.
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#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>

#include <procinfo.h>
#include <sys/proc.h>

int get_parent_info(struct procsinfo **pipp)
{

static int got_pi = FALSE;
static struct procsinfo pi;

pid_t ppid;
pid_t scratch_ppid;

if (got_pi == FALSE) {

ppid = getppid();
scratch_ppid = ppid;

if (getprocs(&pi, sizeof pi, NULL, 0, &scratch_ppid, 1) != 1) {
/* Look at errno for an error code. */
return 1;

}

got_pi = TRUE;

if ((pi.pi_state == SNONE) || (pi.pi_state == SIDL) ||
(pi.pi_state == SZOMB)) {

/* This entry does not describe a running process. */
return 1;

}

if (pi.pi_pid != ppid) {
/* This entry does not describe the parent process. */
return 1;

}

}

*pipp = &pi;
return 0;

}

Figure 10. Use of AIX getprocs Routine to Obtain Information about the Parent Process

3.2 Ignore Terminal-Generated Signals
Section 3.4, “Disassociate the Daemon from Its Controlling Terminal” on page 25
discusses the need to disassociate a daemon process from its controlling
terminal. The section describes what a controlling terminal is, what it means to
be disassociated from one, and why a daemon should disassociate from its
controlling terminal. Briefly stated, the rationale for the disassociation is that a
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#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>

#include <procinfo.h>
#include <sys/proc.h>

int is_parent_SRC(int *it_is)
{

struct procsinfo *pip;
int rc;

*it_is = FALSE;

if ((rc = get_parent_info(&pip)) != 0) {
return rc;

}

if (strcmp(pip->pi_comm, ″srcmstr″) != 0) {
return 0;

}

if (pip->pi_uid != 0) {
return 0;

}

if ((pip->pi_ppid != 1) || (pip->pi_pgrp != pip->pi_pid) ||
(pip->pi_sid != pip->pi_pid) || (pip->pi_ttyp != 0)) {
return 0;

}

*it_is = TRUE;

return 0;
}

Figure 11. Determining if SRC Started the Daemon

controlling terminal can cause the delivery of a signal to the daemon process
whose default action is to terminate the process.

Before being able to successfully disassociate the daemon from a controlling
terminal, it may be necessary for the daemon to migrate itself to a child process;
this is described in section 3.3, “Migrate the Daemon to Another Process.” This
section describes how a daemon process should migrate itself to another
process, and under what conditions it should do so. The important point here is
that while the daemon is migrating itself, the processes involved may have a
controlling terminal. If the processes do have a controlling terminal, some of the
actions performed during the migration can cause a terminal-generated signal to
be delivered to the process to which the daemon is migrating. If the disposition
of the delivered signal in the receiving process is the default, the process may
terminate.

It is simple to guard against this problem. The daemon should simply change
the disposition for all terminal-generated signals so they are ignored. If a child
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process is created, it will inherit these changes to signal dispositions. This will
protect the process from termination due to the delivery of terminal-generated
signals.

There is another advantage to ignoring terminal-generated signals. If, after the
daemon process has disassociated itself from its controlling terminal, it
accidentally acquires another controlling terminal, the delivery of
terminal-generated signals will not cause the daemon to mysteriously terminate.

As discussed in section 3.4, “Disassociate the Daemon from Its Controlling
Terminal,” the terminal-generated signals are SIGHUP, SIGINT, SIGQUIT, SIGTSTP,
SIGTTIN, and SIGTTOU. The ignore_terminal_signals routine in Figure 12 on
page 26 shows how these signals can be ignored.

3.3 Migrate the Daemon to Another Process
When the daemon program is started by a shell, the shell calls fork to create a
child process, and the child process uses an exec routine to run the daemon
program. Unless the shell was instructed to run the daemon program in the
background (with &), the shell process waits for the child process to terminate
before doing anything else. This can be a problem, since daemons tend to run
for a long time. If the daemon was started from a login shell, the shell will be
prevented from processing any more commands entered at its terminal. If the
daemon was started from a shell script, the shell will be prevented from
processing the rest of the shell script.

To prevent these problems, it is customary for the daemon program to migrate
to another process when started from a shell. To do this, the daemon program
calls the fork routine. When the fork routine returns in the parent process (the
child process, from the shell process′s point of view), that process terminates
itself by calling exit. When the fork routine returns in the child process (a
grandchild process, from the shell process′s point of view), that process
continues to run as the daemon. See Figure 13 on page 27. Since the shell
process ′s child process has terminated, the shell process is free to process the
next shell command from its input.

When the daemon program is started by init, the SRC, or inetd, the originating
process calls the fork routine to create a child process. The code in the child
process calls an exec routine to run the daemon program. The parent process
considers the child process that it created to be the daemon. When the child
process terminates, the parent process considers the daemon to have
terminated. Therefore, it would be a mistake for the daemon program to execute
the code in Figure 13 on page 27 if the daemon was started by init, the SRC, or
inetd.

3.4 Disassociate the Daemon from Its Controlling Terminal
A process is usually associated with a controlling terminal. A controlling
terminal can affect a process in ways that are generally considered undesirable
for a daemon. Therefore, part of daemon initialization is disassociating the
daemon process from its controlling terminal. Section 3.4.1, “Introduction to
Sessions and Controlling Terminals” describes the function and features of
controlling terminals. Section 3.4.2, “How to Disassociate from a Controlling
Terminal” on page 30 describes how a daemon can disassociate from its

Chapter 3. Daemon Initialization 25



#include <unistd.h>
#include <signal.h>

int ignore_terminal_signals(void)
{

/*
* The following terminal generated signals will be ignored:
*
* SIGHUP - Terminal hangup.
* SIGINT - Terminal interrupt.
* SIGQUIT - Terminal quit.
* SIGTSTP - Interactive stop.
* SIGTTIN - Background read attempt from controlling terminal.
* SIGTTOU - Background write attempt to controlling terminal.
*
*/

int sig[] = {SIGHUP, SIGINT, SIGQUIT, SIGTSTP, SIGTTIN, SIGTTOU};

int num_sigs = (sizeof sig) / (sizeof sig[0]);
int i;
struct sigaction new_action;

/*
* Set up generic ignore signal action structure.
*/
new_action.sa_handler = SIG_IGN;
(void) sigemptyset(&(new_action.sa_mask));
new_action.sa_flags = 0;

/*
* Ignore terminal generated signals.
*/
for (i = 0; i < num_sigs; i++) {

if (sigaction(sig[i], &new_action, NULL) == -1) {
return 1;

}

}

return 0;
}

Figure 12. The ignore_terminal_signals Routine

controlling terminal. A process can obtain another controlling terminal after
having disassociated itself from its original controlling terminal. Section 3.4.4,
“How to Prevent Reacquisition of a Controlling Terminal” on page 31 describes
how to avoid acquiring another controlling terminal.
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#include <unistd.h>

.

.

.

pid_t pid;

if ((pid = fork()) == (pid_t)-1) {
/* parent process: fork() failed */
/* Log some error message */
exit(1);

}

if (pid != (pid_t)0) {
/* parent process: exit */
exit(0);

}

/* child process: continue as daemon */

.

.

.

Figure 13. Migrating Daemon to Another Process

3.4.1 Introduction to Sessions and Controlling Terminals
Controlling terminals, and their behavior, are related to groupings of processes
called process groups and sessions.

Each process in a POSIX-compliant UNIX system belongs to a process group. A
process group is a collection of one or more processes. When a process group
is created, it contains one process, and that process is known as the process
group leader. The process group is identified by a process group ID. The
process group ID of a process group is the PID of its process group leader.
When a process creates a child process, the child process starts out in the
process group of the parent process. A process group exists until there are no
more processes in the process group. It is possible for a process group leader
to terminate, and for the process group to remain in existence; this will occur if
there are still processes in the process group when the process group leader
terminates. In this case, the process group ID remains the PID of the process
that had been the process group leader.

A process may determine its process group ID with the getpgrp function. If the
process group ID returned is the PID of the process, the process can conclude
that it is the process group leader of the process group. If a process is not a
session leader (described in the following paragraph), it may leave its current
process group and join another process group within the same session
(described in the following paragraph) with the setpgid function. If the process
group being joined does not exist, it is created. When a process forms a new
process group with setpgid, it becomes the process group leader of the new
process group. Most processes do not change the process group to which they
belong. Job control shells like the Korn shell are the most common
manipulators of process group membership.

Chapter 3. Daemon Initialization 27



Each process in a POSIX-compliant UNIX system also belongs to a session. A
session is a collection of one or more process groups. Since process groups
are composed of processes, a session may also be viewed as a collection of one
or more processes. When a session is created, it contains one process, and that
process is known as the session leader. At creation time, the session also
contains one process group; the session leader is the only process in the
process group, and it is the process group leader. On some systems, the
session is identified by a session ID7. The session ID of a session is the PID of
its session leader. When a process creates a child process, the child process is
in the session of the parent process. A session exists until there are no more
processes in the session. It is possible for a session leader to terminate, and for
the session to remain in existence; this will occur if there are still processes in
the session when the session leader terminates. In this case, the session ID
remains the PID of the process that had been the session leader.

A process may determine its session ID with the getsid function7. If the session
ID returned is the PID of the process, the process can conclude that it is the
session leader of the session. If a process is not a process group leader8, it may
leave its current session and form a new session with the setsid function. When
a process forms a new session with setsid, it becomes the session leader of the
new session, and the process group leader of a new process group that is the
sole process group in the session. Most processes do not change the session to
which they belong. However, in order to disassociate from a controlling
terminal, a daemon must become a session leader.

A session may or may not have a controlling terminal. When a session is
created, it starts without a controlling terminal. If the session leader opens a
terminal device, and several conditions are met, the session obtains the terminal
as its controlling terminal. The conditions that must be met are:

 1. The session does not already have a controll ing terminal.

 2. The O_NOCTTY value was not specified in the oflag parameter in the call of the
open function.

 3. The terminal device is not the controlling terminal for any other session on
the system.

Once a session has a controlling terminal, the session leader is also known as
the controlling process of that terminal. Also, the terminal is considered the
controlling terminal of each process in the session. When a new process is
created within a session, it inherits the controlling terminal of the session. A
process may determine if the process and its session have a controlling terminal
by attempting to open the path name returned by the ctermid function9. This path
name can be used by a process to open its controlling terminal. If the call to the
open function fails, and sets errno to the value ENXIO, the process does not have
a controlling terminal.

7 POSIX 1003.1, XPG3, and XPG4 Base Conformance do not define a session ID or the getsid routine. However, they are
defined in XPG4 XOPEN UNIX Conformance and AIX 4.1.

8 Notice that the setsid restriction is the process cannot be a group leader. This is a stronger restriction than might be
expected, which is that the process cannot be a session leader. Since a session leader is always a process group leader, the
actual restriction covers the expected restriction.

9 This path name is commonly /dev/tty on UNIX systems. It is frequently hard-coded in UNIX programs.
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Once a session has obtained a controlling terminal, one process group in the
session is considered a foreground process group, and all other process groups
in the session are considered background process groups. This should be
familiar to shell users who use job control in a shell such as the Korn shell.
When a login shell is a job control shell, the shell is a session leader. The shell
makes each job a separate process group. The shell controls which process
group is the current foreground process group of the session using the tcgetpgrp
and tcsetpgrp functions.

A process in the foreground process group of a session is permitted to read
from the session′s controlling terminal. A process in one of a session′s
background process groups is not permitted to read from the session′s
controlling terminal. If such a process attempts to read from the session′s
controlling terminal, it is sent the SIGTTIN signal. The default action for the
SIGTTIN signal is to stop the process. The process will remain stopped until the
SIGCONT signal is sent to the process. The SIGCONT signal is usually sent to a
stopped process by a job control shell after the shell has called tcsetpgrp to
make the process′s process group the foreground process group.

The user of a shell can control whether processes in a background process
group are permitted to write to the controlling terminal. This is done with the
stty command10. If processes in the background process groups are not
permitted to write to the controlling terminal, and such a process attempts to do
so, the process is sent the SIGTTOU signal. Like SIGTTIN, the default action for
SIGTTOU is to stop the process. Such a process is restarted in the same manner
as described for SIGTTIN.

Certain key sequences entered on a controlling terminal cause signals to be
sent to all processes in the session′s foreground process group. POSIX defines
three of these key sequences: the interrupt character, the quit character, and the
suspend character.

Pressing the interrupt character, typically Control-c11, on a controlling terminal
may cause the SIGINT signal to be sent to all processes in the session′s
foreground process group. When the SIGINT signal is delivered to a process, the
default action is to terminate the process.

Pressing the quit character, typically Control-12, on a controlling terminal may
cause the SIGQUIT signal to be sent to all processes in the session′s foreground
process group. When the SIGQUIT signal is delivered to a process, the default
action is to generate a core file of the process and to terminate the process.

Pressing the suspend character, typically Control-z13, on a controlling terminal
may cause the SIGTSTP signal to be sent to all processes in the session′s
foreground process group. When the SIGTSTP signal is delivered to a process,
the default action is to stop the process. Typically, the process is continued
when the shell sends the process group the SIGCONT signal.

10 The command stty tostop will prevent processes in a background process group from writing to the controll ing terminal. The
command stty -tostop will allow processes in a background process group to write to the controlling terminal.

11 The interrupt character is defined to be Control-c with the command stty INTR ^c.

12 The quit character is defined to be Control- with the command stty QUIT ^.

13 The suspend character is defined to be Control-z with the command stty SUSP ^z.
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If a modem disconnect is detected on a controlling terminal by the terminal
interface, the SIGHUP signal is sent to the controlling process (the session leader).
When the SIGHUP signal is delivered to a process, the default action is for the
process to terminate.

When the session leader of a session with a controlling terminal terminates, the
session may continue to exist. However, all processes in the foreground
process group are sent the SIGHUP signal by the system. This may cause the
processes in the foreground process group to terminate. If the session leader
was a job control shell, it may also send the SIGHUP signal to processes in the
session′s background process groups. When the Korn shell is terminating, it
sends the SIGHUP signal to all processes in the shell′s session, except for
processes in process groups that were created with the nohup command.

3.4.2 How to Disassociate from a Controlling Terminal
The most important points from the previous section are:

• A process in a session with a controlling terminal may be affected by the
terminal.

− A modem disconnect on the controlling terminal may result in the
process being sent a signal whose default action is to terminate the
process.

− Certain key sequences typed on the controlling terminal may result in a
signal to the process whose default action is to terminate the process or
to suspend the execution of the process.

− Attempts by the process to read from or write to the controlling terminal
may result in a signal to the process whose default action is to stop the
process.

• A process in a session with a controlling terminal may be affected by the
session leader.

− If the session leader terminates, the process may be sent a signal whose
default action is to terminate the process.

The consequences of having a controlling terminal are valuable for most
processes. However, the consequences are undesirable for a daemon process.
Therefore, a daemon process should disassociate from any controlling terminal
it may start with, by becoming the session leader of a new session. The daemon
process must also take care not to re-acquire a controlling terminal. That is
discussed in a later section.

It is important to note that when the daemon process is initializing itself, it may
already be the session leader of a session without a controlling terminal. This is
the case on AIX systems when the process is started by the init process and by
the System Resource Controller (SRC). This may also be the case when the
daemon process is started by the Internet Superserver (inetd).

Figure 14 on page 32 shows a recommended method for a daemon process to
ensure that it is the session leader of a session without a controlling terminal.
The create_session routine first calls the setsid function. The call to setsid will
fail if the process is a process group leader. The daemon process will be a
process group leader if it was made a session leader by init, the SRC, or inetd.
Therefore, the return value from setsid is ignored. Instead of using the setsid
return value, the create_session routine verifies that the daemon process is now
a session leader without a controlling terminal. The DAE_IS_SESSION_LEADER
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macro is invoked to determine if the process is a session leader. The macro
was defined in Figure 8 on page 17. The has_controlling_terminal function,
presented in Figure 15 on page 33, is called to determine if the process has a
controlling terminal. If the routine can open the path name returned by ctermid,
the process has a controlling terminal. If the routine does not have a controlling
terminal, the open routine will set errno to ENXIO, and return -1.

If the daemon process is a session leader, but has a controlling terminal, after
the setsid call, the create_session routine tries another method to disassociate
the session from the controlling terminal. This method is coded in the
release_controlling_terminal routine of Figure 16 on page 34. It involves calling
the ioctl function, specifying both the file descriptor through which the
controlling terminal has been opened and the TIOCNOTTY command. This is a
BSD technique for disassociating a controlling terminal from a process. It is
supported in the daemon support routines when compiled on an AIX system with
BSD compatibility. Refer to Figure 7 on page 16 for the definition of
DAE_NOTTY_IOCTL_SUPPORT, which determines whether the
release_controlling_terminal routine actually attempts the ioctl call.

Under what conditions might a daemon process be a session leader, but have a
controlling terminal after the call to setsid in create_session? If the daemon
process was started by init, the SRC, or inetd, it may have been made into a
session leader by the starting process. If the daemon process opens a terminal
device before the call to create_session, it may enter create_session as a
session leader with a controlling terminal. The setsid call in create_session will
not disassociate the process from the controlling terminal, because the process
is a process group leader. The ioctl call in release_controlling_terminal may
disassociate the process from the controlling terminal.

3.4.3 Daemon Migration and Losing the Controlling Terminal
Section 3.3, “Migrate the Daemon to Another Process” on page 25 discusses the
importance of migrating a daemon started by a shell to another process, so the
shell is not prevented from processing its next command. When a daemon is
started from a shell, it is essential that the daemon be migrated to another
process before an attempt is made to disassociate from the controlling terminal.

The setsid routine will not make a process a session leader if it is already a
process group leader. When a job control shell executes a command, it may
make the process executing the command a process group leader. Such a
process cannot use setsid to become a session leader and lose its controlling
terminal. However, a child process of such a process will not be a process
group leader, and will be able to use setsid to become a session leader and
lose its controlling terminal.

3.4.4 How to Prevent Reacquisition of a Controlling Terminal
Once a daemon process has disassociated from its controlling terminal, it should
be very careful not to acquire one again. This can be done simply enough by
specifying O_NOCTTY in the oflag parameter in any open call that might be opening
a terminal device. For an example, see the open call in the
has_controlling_terminal function in Figure 15 on page 33.

Be careful with any functions that may in turn call open. For example, if the fopen
routine is used to open a terminal device, the daemon process may acquire a
controlling terminal, because fopen calls open without specifying O_NOCTTY.
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

#include <sys/types.h>
#include <sys/stat.h>

#if defined(DAE_NOTTY_IOCTL_SUPPORT)
#include <sys/ioctl.h>
#endif

int create_session(void)
{

/*
* Attempt to make this process the session leader of a new session.
* If this succeeds, the process loses its controlling terminal.
* The attempt will fail if the process is already a session
* leader. So, the return code is ignored.
*/
(void) setsid();
/*
* Make sure this process is a session leader.
*/
if (!DAE_IS_SESSION_LEADER()) {

return 1;
}

/*
* If this process is a session leader, but has a controlling
* terminal, try one more time to get rid of the terminal.
* If the controlling terminal cannot be released, give up.
*/
if (has_controlling_terminal()) {

release_controlling_terminal();

if (has_controlling_terminal()) {
return 1;

}
}

return 0;
}

Figure 14. The create_session Routine

Instead of using the fopen routine, a daemon may open the terminal device with
open, specifying O_NOCTTY, and then call fdopen to associate a standard I/O stream
with the file descriptor returned by open. The daemon support routine dae_fopen
uses this technique to provide the functionality and interface of fopen, without
the danger of acquiring a controlling terminal.
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

#include <sys/types.h>
#include <sys/stat.h>

#if defined(DAE_NOTTY_IOCTL_SUPPORT)
#include <sys/ioctl.h>
#endif

int has_controlling_terminal()
{

int fd;
char ctermid_name[L_ctermid];

/*
* See if this process has a controlling terminal. On error, assume
* it does.
*/

if (ctermid(ctermid_name) == NULL) {
abort(); /* daemon support code does not really call abort */

}

fd = open(ctermid_name, O_RDWR | O_NOCTTY);

if (fd != -1) {
(void) close(fd);
return TRUE;

}

if ((fd == -1) && (errno != ENXIO)) {
abort(); /* daemon support code does not really call abort */

}

/*
* This process does not have a controlling terminal.
*/

return FALSE;
}

Figure 15. The has_controlling_terminal Routine

3.4.5 Non-Standard Ways of Disassociating from a Controlling Terminal
The notion of a session is a more recent concept in UNIX systems than the
notion of a process group or the notion of a controlling terminal. Before
sessions were introduced, there were techniques for a process to disassociate
itself from its controlling terminal that did not involve the notion of a session.
The techniques differed between System V-based systems and BSD-based
systems. Many programs that use the older techniques still exist. This section
describes the older techniques and explains why they still work on a system
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

#include <sys/types.h>
#include <sys/stat.h>

#if defined(DAE_NOTTY_IOCTL_SUPPORT)
#include <sys/ioctl.h>
#endif

#if !defined(DAE_NOTTY_IOCTL_SUPPORT)
void release_controlling_terminal(void)
{

return;
}
#endif

#if defined(DAE_NOTTY_IOCTL_SUPPORT)
void release_controlling_terminal(void)
{

int fd;
char ctermid_name[L_ctermid];

if (ctermid(ctermid_name) == NULL) {
return;

}

fd = open(ctermid_name, O_RDWR | O_NOCTTY);

if (fd == -1) {
return;

}

(void) ioctl(fd, TIOCNOTTY, 0);

(void) close(fd);

return;
}
#endif

Figure 16. The release_controlling_terminal Routine

supporting the notion of sessions and the setsid routine. For new programs, it
is recommended that you use the newer techniques previously described.

The older System V and BSD techniques for disassociating from a controlling
terminal are described in UNIX Network Programming, W. Richard Stevens, 1990,
Prentice Hall, Englewood Cliffs. Before discussing the techniques, the book
points out that a process should become a process group leader so it does not
receive signals directed to the process group that the daemon process inherited.
The book points out that the routine to call to become a process group leader on
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both types of systems is the setpgrp routine. It further points out that the syntax
of the setpgrp routine differs between the two types of systems. On System V
systems, the setpgrp routine takes no parameters. On BSD systems, the setpgrp
routine takes two parameters: the process ID of the process whose process
group membership is to change, and the process group ID of the process group
to be joined or created. The book also discusses the need to migrate the
daemon to a child process, if the daemon was started by a shell. Then, it
discusses disassociating from the controlling terminal as follows:

Under System V, a process disassociates itself from its control terminal
(if it has one) by calling the setpgrp system call. In addition to making
the calling process a process group leader, as described above, if the
process is not already a process group leader when it calls setpgrp, this
call disassociates the process from its control terminal. Therefore we
can use this system call to do two things - remove ourself from the
inherited process group and disassociate from the inherited control
terminal. But the only way a process can guarantee that it is not already
a process group leader when it calls setpgrp is to do a fork and then call
setpgrp from the child process. Since the process group ID is copied
from the parent to the child across the fork, and since the child will have
a different process ID from the parent, we are certain the child is not a
process group leader. By doing the fork described previously (to run in
the “background”) we handle this condition. The System V code is

if (fork() != 0)
exit(0); /* parent process */

/* first child process */

setpgrp(); /* change process group and lose control tty */

Under 4.3BSD a process removes its association with its controlling
terminal by opening the file /dev/tty and issuing a TIOCNOTTY ioctl for
the device. The 4.3BSD code is

if (fork() != 0)
exit(0); /* parent process */

/* first child process */

setpgrp(0, getpid()); /* change process group */

if ( (fd = open(″ /dev/tty″ ,  O_RDWR)) != 0) {
ioctl(fd, TIOCNOTTY, (char *) 0); /* lose control tty */
close(fd);

}

The techniques described previously for System V and BSD systems will work on
an AIX system. AIX supports a System V compatible version of setpgrp in the
library libc.a. It also supports a BSD compatible version of setpgrp in libbsd.a.
It also supports the TIOCNOTTY ioctl command. The libc.a version of setpgrp will
cause the calling process to become a session leader if it is not already a
process group leader. As a result, the process will lose its controlling terminal.
The libbsd.a version of setpgrp will just change the process group of the
specified process. However, the TIOCNOTTY ioctl command will cause the calling
process to become a session leader. As a result, the process will lose its
controlling terminal. Therefore, a process becomes a session leader without a
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controlling terminal on an AIX system when it executes the System V or BSD
code fragments shown previously14.

3.5 Deal with Non-Terminal Generated Signals
Daemon initialization might want to deal with signals that are not generated by
controlling terminals. The three likely candidates are SIGCHLD, SIGPIPE, and
SIGDANGER.

3.5.1 SIGCHLD and Zombie Processes
It is common for a daemon that acts as a concurrent server to create child
processes, and to not care about the exit status of the child processes. If this is
the case, the daemon should not allow the child processes to remain zombies
for long. When a process terminates before its parent, unless the proper
arrangements are made, the child process becomes a zombie process. A
zombie process still occupies an entry in the kernel′s process table, so its
parent process can collect its status with the wait or waitpid function. Once the
parent process has collected the status of a child process, the process table
entry used by that child process is freed. If the parent process is not interested
in collecting the exit status of its child processes, it would be appropriate to use
one of the techniques described in the following sections.

When the daemon is running on System V, on AIX, or on a system that complies
with XPG4 X/OPEN UNIX, setting the disposition of the SIGCHLD signal so it is
ignored has special semantics. On such systems, when the SIGCHLD signal is
ignored in a process, child processes of the process do not become zombies. A
routine similar to prevent_zombies in Figure 17 on page 37 is used in the daemon
support routines to prevent the creation of zombies when the code is compiled
on AIX systems and systems compliant to XPG4 X/OPEN UNIX. Refer to Figure 7
on page 16 for the code that determines if DAE_IGN_ZOMBIES_SUPPORT is defined.

On systems that do not support the special semantics of ignoring the SIGCHLD
signal, the daemon can install a signal handler for the signal that simply calls
waitpid to collect, and ignore, the exit status of the child process that has
terminated. Routines similar to prevent_zombies and zombie_killer in Figure 18
on page 38 are used in the daemon support routines to prevent long term
zombies. The zombie_killer routine, which is the SIGCHLD signal handler installed
by prevent_zombies, loops through calls to waitpid while the waitpid routine
returns positive numbers, which are the PIDs of child processes that have
terminated. Thus, waitpid will be called as long at it reports the death of another
child process. The routine also loops while waitpid indicates it has been
interrupted15 . The first parameter to waitpid, -1, means the routine should
report any child process that has terminated. The second parameter to waitpid,
NULL, indicates the exit status of the child process is of no interest to the caller.
The third parameter to waitpid, WNOHANG, indicates that if there is no child process
whose termination is to be reported, return immediately.

14 To use the BSD code, the program must be compiled with the _BSD macro defined to 43 or 44, and the program must be linked
with both the libbsd.a and libc.a l ibraries.

15 Interrupted system calls are discussed in 7.5, “Interrupted System Calls” on page 170.
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#include <signal.h>
#include <errno.h>

#if defined(DAE_IGN_ZOMBIES_SUPPORT)
int prevent_zombies(void)
{

/*
* In ignoring SIGCHLD signals, not only will SIGCHLD signals
* not be delivered, but child processes will not become zombies,
* and the daemon cannot wait() for the termination of a particular
* child. If the daemon process wants notification when its child
* processes die or are stopped, it should catch this signal.
* If the daemon process does not want notification when its child
* processes die or are stopped, but it wants to wait() for
* child processes, the action for SIGCHLD should be set to
* SIG_DFL.
*/

struct sigaction new_action;

/*
* Set up generic ignore signal action structure.
*/
new_action.sa_handler = SIG_IGN;
(void) sigemptyset(&(new_action.sa_mask));
new_action.sa_flags = 0;

if (sigaction(SIGCHLD, &new_action, NULL) == -1) {
/* Look at errno for details about the error. */
return 1;

}

return 0;
}
#endif

Figure 17. The prevent_zombies Routine

3.5.2 SIGPIPE and Broken Connections
If a daemon is involved in connection-oriented communications using pipes or
sockets, it should ignore, or install a signal handler for, the SIGPIPE signal. The
SIGPIPE signal is generated when a process writes to a pipe or a socket, and
there is no reader process. This condition is often dealt with more effectively by
looking for an error indication from a function like write, than it is in a signal
handler.

The default action associated with receiving a SIGPIPE signal is process
termination. If the signal is not ignored, or a signal handler is not installed, the
termination of a reader process may cause the writer process to terminate. This
is seldom the desired behavior when the writer process is a daemon. Therefore,
the dae_init routine, of the daemon support routines, changes the disposition of
the SIGPIPE signal so it is ignored.
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#include <signal.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/wait.h>

#if !defined(DAE_IGN_ZOMBIES_SUPPORT)
void zombie_killer(int signo)
{

pid_t pid;

do {
pid = waitpid((pid_t)-1, NULL, WNOHANG);

} while ((pid > (pid_t)0) || (pid == (pid_t)-1 && errno == EINTR));

return;
}
#endif

#if !defined(DAE_IGN_ZOMBIES_SUPPORT)
int prevent_zombies(void)
{

struct sigaction new_action;

/*
* Set up signal action structure.
*/
new_action.sa_handler = zombie_killer;
(void) sigemptyset(&(new_action.sa_mask));
new_action.sa_flags = SA_RESTART | SA_NOCLDSTOP;

if (sigaction(SIGCHLD, &new_action, NULL) == -1) {
/* Look at errno for information about the error. */
return 1;

}

return 0;
}
#endif

Figure 18. The prevent_zombies and zombie_killer Routines

3.5.3 SIGDANGER and AIX Paging
When an AIX system runs low on paging space, it attempts to alleviate the
problem by killing processes. A daemon process that is crucial to the proper
functioning of a system should protect itself from being killed in such a situation.
One of the methods available is to install a signal handler for the SIGDANGER
signal. This is discussed in detail in Chapter 8, “AIX Paging Space Allocation”
on page 203.
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3.6 Close Unnecessary File Descriptors
Since a daemon process can be started in a variety of ways, it has become a
custom for a daemon to close any file descriptors it does not need. There is a
practical purpose to this exercise. While a process has a file opened, the file
system in which the file exists usually cannot be unmounted. Since a typical
daemon process runs for a long time, if it had any unneeded files open, it could
unnecessarily prevent the system administrator from unmounting a file system.

Care should be taken with file descriptors 0, 1, and 2. If the daemon process
was started by the inetd process, these file descriptors probably should not be
closed; inetd associated them with the socket through which the daemon should
communicate with its client. If the daemon was started by the SRC, the file
descriptors may be associated with something meaningful. The SRC definition of
a daemon specifies how these file descriptors should be set up. It is also
possible for the init process to set these descriptors. If the daemon process
was started by a shell, these file descriptors are probably not meaningful. They
are usually associated with the shell session′s controlling terminal.

The daemon support routines include a routine similar to close_files in
Figure 19 on page 40. A parameter is passed to the routine, indicating whether
the daemon was started by inetd or the SRC. If the daemon was started by
inetd or SRC, all file descriptors except file descriptors 0, 1, and 2 will be closed;
otherwise, all file descriptors will be closed. The daemon support routines do
not preserve file descriptors 0, 1, and 2 when the daemon is started by init for
the following reasons:

• It is difficult, if not impossible, to distinguish between a process started by
init and a process inherited by init. Refer to the discussion in 3.1,
“Determine How the Daemon Was Started” on page 19.

• Starting a process with init and having it redirect input or output can lead to
the acquisition of a controlling terminal. Therefore, it should not be
encouraged.

The close_files routine uses one of two methods to close unneeded file
descriptors. If DAE_FCNTL_CLOSE_SUPPORT is defined, an AIX-specific method is
used. Otherwise, a generic POSIX-compliant method is used. Referring to
Figure 7 on page 16, we see that DAE_FCNTL_CLOSE_SUPPORT is only defined if the
code is compiled on an AIX system.

The POSIX method involves determining the maximum number of files that can
be opened by a process on this system, and calling the close function for each
of the file descriptors that may potentially be open. The maximum number of
files that can be opened by a process varies from system to system. The value
can be determined by a call to sysconf specifying the _SC_OPEN_MAX parameter. If
the sysconf routine returns -1, but does not change the value of errno, the
system does not have a defined maximum number of files that can be opened by
a process. In that case, a guess at a reasonable maximum must be made. This
code guesses 2000, which happens to be the maximum on an AIX system. Once
a maximum is established, a loop of calls to close is executed. This loop will
probably be executed thousands of times. Most of the close calls will probably
return an error indication, because most of the file descriptors were probably not
open in the first place.
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#include <unistd.h>
#include <fcntl.h>
#include <errno.h>

int close_files(int inetd_or_SRC)
{

int closemin;
int closemax;
int i;

closemin = (inetd_or_SRC) ? 3 : 0;

#if defined(DAE_FCNTL_CLOSE_SUPPORT)

if (fcntl(closemin, F_CLOSEM, 0) == -1) {
return 1;

}

#else
#define OPEN_MAX_GUESS 2000

errno = 0;
if ((closemax = sysconf(_SC_OPEN_MAX)) == -1) {

if (errno == 0) {
closemax = OPEN_MAX_GUESS;

} else {
return 1;

}
}

for (i = closemin; i < closemax; i++) {
(void) close(i);

}

#undef OPEN_MAX_GUESS

#endif

return 0;

}

Figure 19. The close_files Routine

The AIX-specific method is to call fcntl with the F_CLOSEM command. This causes
all file descriptors in the process, starting with the one referred to by the first
parameter, to be closed. This method has two advantages over a user level
loop of calls to close. First, only one system call is made, instead of thousands
of system calls. Second, the AIX kernel keeps track of the largest file descriptor
currently opened by the process; this allows the close loop in the kernel to avoid
iterating thousands of times in normal situations.
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3.7 Ensure Certain File Descriptors are Open
When the open routine succeeds in opening a file, the file descriptor used is the
lowest available file descriptor16 in the process. In a daemon process that has
just closed most, if not all, of its file descriptors, the lowest available file
descriptor may be file descriptor 0, 1, or 2. The convention that file descriptors
0, 1, and 2 are used for a process′s standard input, standard output, and
standard error output is so established on UNIX systems that when these
descriptors refer to files that a shell did not set up as standard input, output, and
error output, confusion can result.

To avoid such confusion, a daemon process should ensure that these three file
descriptors refer to an open file when daemon initialization is complete. If one
of the descriptors does not refer to something meaningful, opening /dev/null on
the file descriptor seems to be rational. Read attempts from /dev/null return 0
bytes. Data written to /dev/null is discarded.

Once the daemon has ensured that file descriptors 0, 1, and 2 are associated
with open files, successful calls to the open and creat routines within the daemon
will always return file descriptors larger than 2.

Figure 20 on page 42 shows the null_files routine, which is similar to a routine
in the daemon support routines. For each of the file descriptors 0, 1, and 2, the
null_files routine uses the fstat function to determine if the file descriptor is
associated with an open file. If a file descriptor is not associated with an open
file, the fstat routine should set errno to EBADF, and return -1. If one of these
descriptors is not associated with an open file, the open routine is called on
/dev/null. The file descriptor returned by open should be the same as the file
descriptor being considered, since the file descriptor being considered is always
the lowest available file descriptor in the process. The code makes sure this is
always the case.

3.8 Change the Current Working Directory
When a daemon process is first started, its current working directory depends on
how it was started. If it was started by inetd, init, or the SRC, the current
working directory is probably the root directory. If started by a shell, it could be
any directory. If the daemon did not change its current working directory, it may
prevent a file system from being unmounted, since the process has the directory
open. Therefore, the daemon initialization code should change its current
working directory to either the root directory, /, or to a directory that is
meaningful to the daemon.

It may be useful to keep in mind that when a process generates a core file, the
file is placed in the current working directory. If the daemon has a directory
dedicated to it, it may make sense for the daemon to run with that directory as
the current working directory. If the daemon ever generated a core file, this
would reduce the chances of the core file being overwritten by another process
generating a core file.

16 An available file descriptor is one that is not associated with an open file.
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#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

int null_files(void)
{

int ifd;
int ofd;
int rc;
struct stat statbuf;

for (ifd = 0; ifd <= 2; ifd++) {

rc = fstat(ifd, &statbuf);

if (rc != -1) {
continue; /* File descriptor useful; consider next one. */

}

if (errno != EBADF) { /* Error was not the expected one. */
/* The errno value describes the error. */
return 1;

}

/*
* The stat routine returned EBADF. The file descriptor
* does not refer to an open file. Open /dev/null on it.
*/
if ((ofd = open(″ /dev/null″ ,  O_RDWR)) == -1) {

/* The errno value describes the error. */
return 1;

}

if (ofd != ifd) {
return 1; /* The returned file descriptor was unexpected. */

}

}

return 0;
}

Figure 20. The null_files Routine

The daemon support routines contain a routine similar to misc_stuff in Figure 21
on page 43.
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#include <unistd.h>

int misc_stuff(void)
{

if (chdir(″/″) == -1) {
/* errno gives specific information about the error */
return 1;

}

(void) umask(0);

return 0;
}

Figure 21. The misc_stuff Routine

3.9 Set the Process File Mode Creation Mask
Each process has a file mode creation mask, the umask. The umask value is a
bit mask where each bit represents a file permission bit. The file permission bits
represent the read, write, and execute permissions for a file owner, group, and
others. When a file is created by a process, the umask value of the process is
used to mask off permission bits. If the umask value is non-zero, and an open or
creat function call is used to create a file, not all of the permission bits specified
on the open or creat call may be applied to the created file.

Since a daemon may be started in a variety of ways, it may inherit any valid
umask value17. Therefore, the daemon should reset its umask value. A umask
value of 0 allows the daemon code to directly control the permissions that will
apply to created files. The process umask value may be set with the umask
function. See the misc_stuff routine in Figure 21 for an example.

17 The umask value is inherited across the fork and exec functions.
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Chapter 4. Managing a Daemon with the init Process

The init process is the first user level process run on a UNIX system. All other
user processes are descendants of it. The init process spawns other processes
when the system is booted, and when the system′s run level is changed. It may
also terminate processes when the system run level is changed.

A system run level is really just a tag representing a collection of processes that
will run when the init process is told to bring the system into that run level.
System run levels that can be specified in AIX are 0 through 9, S, s, M, and m.

• Run levels 0 and 1 are reserved for future use.
• Run level 2 is intended to mean the full multiuser environment.
• Run levels 3 through 9 can be defined by the system′s administrator.
• Run levels S, s, M, and m represent maintenance mode.

Daemons to be started at system boot time are started directly or indirectly by
the init process. On a system without the System Resource Controller, init
may directly spawn a daemon process, or a shell spawned by init to run a shell
script may spawn a daemon process. On a system with the System Resource
Controller, the SRC daemon, srcmstr, is started by the init process. Daemons
under SRC control are started by srcmstr, but the init process is still involved.
The init process directly or indirectly executes a startsrc command for every
SRC-controlled daemon to be started when the system is booted or changes run
levels. The startsrc command sends a start request to srcmstr, causing srcmstr
to start the daemon.

On AIX systems, the init process is run with real and effective user IDs of 0
(root), and with real and effective group IDs of 0 (system). A process that is
spawned by init runs with these user and group IDs, unless the program being
run is a set-user-ID or set-group-ID program, or the program explicitly changes
the IDs under which it is running. Therefore, a daemon directly started by init,
without the SRC, usually runs with superuser privileges.

4.1 The /etc/inittab File
On AIX, and other systems derived from System V, the actions of the init
process can be customized through the /etc/inittab file. When the system is
booted, or is to enter one of the run levels 0 through 9, entries in the
/etc/inittab file are processed by the init process. The entries are generally
processed in the order in which they are found in the file.

Each entry in the /etc/inittab file has the following format:

Identifier:RunLevel:Action:Command

• The Identifier field is a tag that uniquely identifies the entry.
• The RunLevel field specifies the system run levels on which the command is

run. The run levels that can be specified are 0 through 918.
• The Command field specifies the command to run.

18 Run levels a, b, and c can also be specified, but they are not important for this discussion.
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• The Action field specifies how the command is to be run.

For full documentation on the meaning of the fields and their possible values,
refer to the “inittab File” entry in Chapter 1, “System Files” of AIX Version 4.1:
Files Reference, SC23-2512.

The contents of an /etc/inittab file from an AIX 4.1 system appears in Figure 22.
The entry with the init identifier makes run level 2 the default run level. The
keyword initdefault in this entry indicates that the function of the entry is to set
the default run level.

init:2:initdefault:
brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot
powerfail::powerfail:/etc/rc.powerfail 2>&1 | alog -tboot > /dev/console
rc:2:wait:/etc/rc 2>&1 | alog -tboot > /dev/console # Multi-User checks
fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console
srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
rctcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons
rcnfs:2:wait:/etc/rc.nfs > /dev/console 2>&1 # Start NFS Daemons
cron:2:respawn:/usr/sbin/cron
nimclient:2:wait:/usr/sbin/nimclient -S running
cons:0123456789:respawn:/usr/sbin/getty /dev/console
qdaemon:2:wait:/usr/bin/startsrc -sqdaemon
writesrv:2:wait:/usr/bin/startsrc -swritesrv
uprintfd:2:respawn:/usr/sbin/uprintfd
diagd:2:once:/usr/lpp/diagnostics/bin/diagd >/dev/console 2>&1

Figure 22. A Sample /etc/inittab File

The uprintfd entry is an example of an entry causing the init process to start a
daemon process. The daemon′s executable file is /usr/sbin/uprintfd, as
specified in the Command field. The daemon will be started when the system
enters run level 2, which, as mentioned earlier, is the system′s default run level.
The Action field specifies respawn. This is an important value for daemons. It
instructs the init process to start the daemon if it is not already running, to not
wait for the daemon to terminate before processing the next entry in the
/etc/inittab file, and to restart the daemon when it terminates. The frequency
with which the init process is willing to respawn a command is limited. See the
init man page entry in AIX Version 4.1: Command Reference, SBOF-1851, for
details.

The rctcpip entry is an example of an /etc/inittab entry that causes the init
process to run a shell script. The entry causes init to run the /etc/rc.tcpip
shell script. This shell script starts the TCP/IP daemons. The wait value
specified in the Action field causes init to run the command once when entering
one of the specified run levels, and to wait for the shell script to terminate before
proceeding to the next entry in /etc/inittab. The RunLevel value of 2 causes
init to run the shell script when the system enters run level 2.

Several entries in the inittab file interact with the System Resource Controller
(SRC). The srcmstr entry starts the SRC daemon, srcmstr. The writesrv and
qdaemon entries execute a startsrc command to start a daemon under the control
of SRC. Notice that the Action value specified for these entries is wait, not
respawn. The startsrc command is a transient program. It just sends a start
request to the srcmstr daemon, causing the srcmstr daemon to spawn the
daemon identified in the startsrc arguments. Therefore, it would be
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inappropriate to respawn the startsrc command when it terminates. When a
daemon is placed under SRC control, it can be specified whether the daemon
itself is to be respawned or not (refer to 5.2, “Subsystem Definition” on page 62).
The /etc/rc.tcpip shell script mentioned above is written such that the TCP/IP
daemons can be started under SRC control if the SRC is available.

4.2 Updating the /etc/inittab File
The traditional way to update /etc/inittab is to use a text editor. However, on
AIX, the /etc/inittab file is simply the traditional representation of information
that is stored in the Object Data Manager (ODM). The file′s contents are
generated from information in the ODM. If the /etc/inittab file is modified with
a text editor on AIX, the changes will disappear the next time the file′s contents
are updated from the ODM. Refer to Chapter 17, “Object Data Manager(ODM)”
in AIX Version 4.1: General Programming Concepts: Writing and Debugging
Programs, SC23-2533, for information about the ODM.

AIX supplies four commands to manipulate /etc/inittab entries. They are:

mkitab, to add a new entry
chitab, to change an existing entry
lsitab, to list an existing entry
rmitab, to remove an existing entry

The mkitab, chitab, and rmitab commands modify both the ODM and the
/etc/inittab file. Refer to the man pages for these commands in AIX Version
4.1: Command Reference, SBOF-1851 for detailed information. Figure 23
presents some examples of using these commands to modify the /etc/inittab
entries.

$ mkitab ″testentry:2:respawn:/tmp/nonexistingfile″
$ lsitab testentry
testentry:2:respawn:/tmp/nonexistingfile
$ chitab ″testentry:2:once:/tmp/nonexitingfile -d argument″
$ lsitab testentry
testentry:2:once:/tmp/nonexitingfile -d argument
$ grep testentry /etc/inittab
testentry:2:once:/tmp/nonexitingfile -d argument
$ rmitab testentry
$ lsitab testentry

Figure 23. Examples of the mkitab, chitab, rmitab, and lsitab Commands

The lsitab command can be used to list the entire contents of /etc/inittab, as
shown in Figure 24 on page 48.
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$ lsitab -a
init:2:initdefault:
brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot
powerfail::powerfail:/etc/rc.powerfail 2>&1 | alog -tboot > /dev/console
rc:2:wait:/etc/rc 2>&1 | alog -tboot > /dev/console # Multi-User checks
fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console
srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
rctcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons
rcnfs:2:wait:/etc/rc.nfs > /dev/console 2>&1 # Start NFS Daemons
cron:2:respawn:/usr/sbin/cron
nimclient:2:wait:/usr/sbin/nimclient -S running
cons:0123456789:respawn:/usr/sbin/getty /dev/console
qdaemon:2:wait:/usr/bin/startsrc -sqdaemon
writesrv:2:wait:/usr/bin/startsrc -swritesrv
uprintfd:2:respawn:/usr/sbin/uprintfd
diagd:2:once:/usr/lpp/diagnostics/bin/diagd >/dev/console 2>&1
$

Figure 24. Listing the Contents of the /etc/inittab File

4.3 Changing the System Run Level
The telinit or init commands can be used to change the system run level.
When this is done, the init process sends the SIGTERM signal to all processes
that are not defined to run in the target run level. Processes can catch this
signal, clean themselves up, and terminate in a controlled fashion. If the
disposition for the SIGTERM signal is the default, the process will be terminated
immediately when the SIGTERM signal arrives. Twenty seconds after the SIGTERM
signals have been sent, the SIGKILL signal is sent to processes that have not
terminated. A process cannot ignore or catch the SIGKILL signal; it will always
terminate a process receiving it.

A similar sequence of events occurs when a system is shutdown with the
shutdown command. SIGTERM is sent to a process, and if the process has not
terminated in thirty seconds, SIGKILL is sent to the process.

If a daemon wants the opportunity to clean up when it is to be terminated, it
should install a signal handler for the SIGTERM signal. This applies to daemons
regardless of how they were started: with init, SRC, inetd, or a shell.
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Chapter 5. Managing a Daemon with the SRC

On AIX, many daemons that would traditionally be managed by the init process
are managed instead by the System Resource Controller (SRC). As discussed in
Chapter 4, “Managing a Daemon with the init Process” on page 45, the SRC
has a daemon, srcmstr. The srcmstr daemon is controlled by the init process.
Daemons under SRC control are started and managed by the srcmstr daemon.
Commands are provided that allow the system administrator to control the
execution of daemons through the SRC.

The SRC can be used to control two types of daemons, subsystems and
subservers. A subsystem is a daemon that is directly controlled by the SRC.
When an SRC command targets a subsystem, the request is processed by
srcmstr or the subsystem itself. A subserver is a daemon that is directly
controlled by a subsystem, and is defined to the SRC. When an SRC command
targets a subserver, the request is processed by the subsystem that controls the
subserver. Any SRC subsystem can have subservers, but the only subsystem
that is known to exist that supports subservers is the inetd subsystem. This
chapter only describes the interaction between the SRC and subsystems. How
the SRC interacts with inetd subservers is described in Chapter 6, “Managing a
Daemon with the Internet Superserver” on page 129. This document does not
discuss the topic of how a subsystem can be written to support subservers.

When a daemon is placed under SRC control as a subsystem, characteristics of
the daemon are defined to the SRC. Part of the subsystem′s definition indicates
how srcmstr should communicate requests to the daemon. The choices
available are through signals, through a System V message queue, or through a
BSD socket. When signal communication is used, the fewest changes are
needed in the daemon source code. However, signal communication allows the
daemon to support only a subset of SRC functionality. System V message queue
communication and BSD socket communication require more changes to the
daemon source code, while allowing the daemon to support full SRC
functionality. The daemon support routines are designed to minimize the
changes needed for a daemon to take advantage of message queue and socket
communications. They are not described here, but in Chapter 10, “Daemon
Support Routines” on page 245.

The first five sections of this chapter introduce the SRC′s capabilities with regard
to subsystems. Section 5.1, “The SRC Commands” on page 50 is an
introduction to the commands available to the system administrator to control
SRC subsystems. Section 5.2, “Subsystem Definition” on page 62 discusses the
commands that are used to define SRC subsystems. Section 5.3, “Subsystem
User ID” on page 68 discusses the limitations as to the user under which an
SRC subsystem may run. Section 5.4, “Subsystem Failure, Respawning, and
Notification” on page 73 is an introduction to the support in the SRC for dealing
with failed subsystems. Section 5.5, “Subsystem Groups” on page 83 discusses
considerations to take into account when organizing SRC subsystems into
groups.

The remaining sections of this chapter discuss programming and SRC
subsystems. Section 5.6, “Programming for the SRC in a Daemon” on page 84
describes programming techniques that allow a daemon to be managed by the
SRC as a subsystem. Section 5.7, “Programming an SRC Notification Method”
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on page 126 describes programming issues pertaining to SRC notification
methods, which can be invoked when an SRC subsystem fails.

5.1 The SRC Commands
This section provides an introduction to the SRC commands that pertain to
subsystem execution. The SRC commands that pertain to subsystem definition
are discussed in 5.2, “Subsystem Definition” on page 62.

5.1.1 The lssrc Command
The lssrc command can be used to list information about daemons under SRC
control. It is the one SRC command that can be run by any user. Figure 25
shows the -a flag being used to display information about all the daemons on the
system defined to be under SRC control. Each line of output represents one
daemon. Four columns of information are presented. The first column gives the
name of the subsystem. Subsystem is the SRC term for a daemon. The
subsystem name can be, but does not have to be, the name of the program that
implements the daemon. How the subsystem name is associated with the
program that is executed will be discussed in 5.2, “Subsystem Definition” on
page 62. When a particular daemon is referenced in an SRC command, the
subsystem name is usually used, although the PID can be used.

Notice from the lssrc output that inetd is controlled by the SRC. The second
column of output indicates the group to which each subsystem belongs. When a
subsystem is defined, it can be placed into a group, although that is not
required. In many SRC commands, all the subsystems in a group can be
referred to by the group name. Notice that the inetd subsystem belongs to the
tcpip group, along with the gated, named, routed, rwhod, iptrace, timed, and snmpd
subsystems. The third column gives the PID of the subsystem, if it is running.
The inetd subsystem is running in a process whose PID is 5496. The fourth
column indicates the status of the subsystem. The common values are active
and inoperative. An active subsystem is one which is running normally. An
inoperative subsystem is one that is not running. There are other possible
values that describe various intermediate states.

# lssrc -a
Subsystem Group PID Status
 syslogd ras 4960 active
 sendmail mail 3430 active
portmap portmap 5234 active
inetd tcpip 5496 active
qdaemon spooler 4236 active
writesrv spooler 4754 active
lpd spooler inoperative
gated tcpip inoperative
named tcpip inoperative
routed tcpip inoperative
rwhod tcpip inoperative
iptrace tcpip inoperative
timed tcpip inoperative
snmpd tcpip inoperative

Figure 25. Output from lssrc -a Command
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The lssrc command can be used to list information about a particular group of
subsystems, or about one particular subsystem. Figure 26 on page 51
illustrates how the -g flag can be used to list information about a group of
subsystems, and the -s flag can be used to list information about a particular
subsystem.

# lssrc -g tcpip
Subsystem Group PID Status
inetd tcpip 5496 active
gated tcpip inoperative
named tcpip inoperative
routed tcpip inoperative
rwhod tcpip inoperative
iptrace tcpip inoperative
timed tcpip inoperative
snmpd tcpip inoperative

# lssrc -s inetd
Subsystem Group PID Status
inetd tcpip 5496 active

# lssrc -s qdaemon
Subsystem Group PID Status
qdaemon spooler 4236 active

Figure 26. Output of lssrc -g and lssrc -s Commands

The information presented by lssrc in the examples presented so far is referred
to by the SRC documentation as subsystem short status. This short status
information is provided to the lssrc command by the srcmstr daemon. The
subsystems themselves are not involved in responding to requests for short
status.

An SRC subsystem has the option of providing long status in response to an
lssrc command. Long status is requested with the -l flag. The information
returned by a particular subsystem in response to a long status request is
entirely up to the subsystem. Information that is meaningful to the system
administrator and relevant to the subsystem is appropriate. Since use of the
lssrc command is not restricted, information whose access should be restricted
should not be included in long status output. A subsystem must be defined to
use message queue or socket communication in order to return long status.

Figure 27 on page 52 shows the long status output provided by qdaemon and
inetd. The output for qdaemon is just an error message indicating that long status
is not available from qdaemon because it only supports signal communication from
srcmstr. The message is actually being generated by srcmstr; the qdaemon
subsystem was not involved. The inetd subsystem can provide long status,
because it supports socket communication from srcmstr.

In Figure 27 on page 52 the inetd long status begins with the same information
that is provided when short status is requested; the name of the subsystem, the
group to which it belongs, its PID, and the state of the subsystem. This is
followed by an indication as to whether the inetd daemon is running in debug
mode or not; currently it is not. Next, the long status output documents how
inetd handles certain signals. Finally, it provides information about the services
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inetd provides; much of that information is also found in the inetd configuration
file, /etc/inetd.conf. The inetd daemon writer decided what information to
supply in response to a long status request. The inetd daemon writer had to
include code in his daemon to provide this status.

# lssrc -l -s qdaemon
0513-005 The Subsystem, qdaemon, only supports signal communication.

# lssrc -l -s inetd
Subsystem Group PID Status
inetd tcpip 5496 active

Debug Inactive

Signal Purpose
 SIGALRM Establishes socket connections for failed services
 SIGHUP Rereads configuration database and reconfigures services

 SIGCHLD Restarts service in case the service dies abnormally

Service Command Arguments Status
 ttdbserverd /usr/dt/bin/rpc.ttdbserverd rpc.ttdbserverd 100083 active
 time internal active
 daytime internal active
 chargen internal active
 discard internal active
 time internal active
 daytime internal active
 chargen internal active
 discard internal active
 echo internal active
 pcnfsd /usr/sbin/rpc.pcnfsd pcnfsd 150001 1-2 active
 rwalld /usr/lib/netsvc/rwall/rpc.rwalld rwalld 100008 1 active
 rusersd /usr/lib/netsvc/rusers/rpc.rusersd rusersd 100002 1-2 active

 rstatd /usr/sbin/rpc.rstatd rstatd 100001 1-3 active
 ntalk /usr/sbin/talkd talkd active
exec /usr/sbin/rexecd rexecd active
login /usr/sbin/rlogind rlogind active
telnet /usr/sbin/telnetd telnetd active
ftp /usr/sbin/ftpd ftpd active

Figure 27. Output of lssrc -l Command

There are other flags defined for the lssrc command. See the man page in AIX
Version 4.1: Command Reference, SBOF-1851 for more information.

5.1.2 The stopsrc Command
The stopsrc command is the SRC command that is used by the system
administrator to stop a daemon that is running under SRC control. SRC defines
three types of stop requests: normal, forced, and cancel. The SRC defines the
semantics of the three types of stop requests, and it is up to the SRC daemon,
srcmstr, and daemons running under SRC control to support these semantics. A
normal stop request asks the target daemon to not accept new requests for
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work, complete all current processing, wait for all application activity to
complete, release resources, and terminate. For a concurrent server, this would
mean not accepting new client requests, continuing to process the requests of
current clients, and terminating when all client requests have been satisfied. A
forced stop request asks the target daemon to release resources and terminate
quickly. The target daemon should not wait for current client processing to
finish.

The cancel stop request is similar to the forced stop request with regard to the
responsibilities of the target daemon. However, the cancel stop request includes
a threat: after a predetermined amount of time, if the target daemon has not
terminated voluntarily, the srcmstr daemon will send a SIGKILL signal to it. The
SIGKILL signal will terminate the target daemon.

Figure 28 shows an example where the stopsrc command is used to terminate
the inetd daemon. First, the lssrc command shows that the inetd subsystem is
running. A ps command then shows that the PID reported by lssrc really
represents a process running inetd. The stopsrc command is run, specifying the
inetd subsystem. The lssrc and ps commands are then used to show that the
inetd daemon is no longer running. Finally, a telnet request from another
system fails, because the telnet daemon is a daemon that runs under inetd
control.

[it1n13] # lssrc -s inetd
Subsystem Group PID Status
inetd tcpip 5496 active

[it1n13] # ps -p 5496
PID TTY TIME CMD
5496 - 0:21 inetd

[it1n13] # stopsrc -s inetd
0513-044 The stop of the /usr/sbin/inetd Subsystem was completed successfully.

[it1n13] # ps -p 5496
PID TTY TIME CMD

[it1n13] # lssrc -s inetd
Subsystem Group PID Status
 inetd tcpip inoperative

[it1n14] # telnet it1n13.aix.kingston.ibm.com
Trying...
telnet: connect: A remote host refused an attempted connect operation.
telnet> quit
[it1n14] #

Figure 28. Using stopsrc to Stop a Subsystem

The default stop request generated by the stopsrc command is for a normal stop.
A forced stop can be specified by using the -f flag. A cancel stop can be
specified by using the -c flag.
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A group of subsystems can be stopped by specifying the -g flag. All the
subsystems on the system can be stopped by specifying the -a flag.

See the stopsrc man page in AIX Version 4.1: Command Reference, SBOF-1851
for more details.

5.1.3 The startsrc Command
The startsrc command is the SRC command that is used to start a daemon
under SRC control. The command can be specified in a shell script or in a
configuration file that allows shell commands, like /etc/inittab. The command
can also be used by a system administrator to start an SRC subsystem.
Figure 29 shows an example of using the startsrc command to start the inetd
daemon.

[it1n13] # startsrc -s inetd
0513-059 The inetd Subsystem has been started. Subsystem PID is 5584.

[it1n13] # lssrc -s inetd
Subsystem Group PID Status
inetd tcpip 5584 active

Figure 29. Using startsrc to Start a Subsystem

An SRC subsystem definition specifies if the subsystem allows SRC to start
multiple instances of the subsystem. Many subsystems do not allow multiple
instances; for example, inetd does not. Figure 30 shows the error displayed
when SRC is used to try to start multiple instances of a subsystem that does not
allow it.

[it1n13] # startsrc -s inetd
0513-029 The inetd Subsystem is already active.
Multiple instances are not supported.

Figure 30. Attempting to Start Mult iple Instances of a Subsystem

The startsrc command allows for the specification of arguments that are to be
passed to the daemon that will be started. Arguments for the daemon are
specified with the startsrc -a flag. The arguments themselves should be
protected from interpretation by the shell with double quotes. Figure 31 on
page 55 shows an example of passing an argument to a subsystem. The
subsys01 subsystem is started, and the -p flag is passed to the subsystem. When
a subsystem is defined to the SRC, the definition can contain arguments that are
always passed to the subsystem. This will be discussed in 5.2, “Subsystem
Definition” on page 62. Any arguments that should always be passed to the
subsystem when it is started with SRC should be specified in the definition.
Additional arguments can be specified with the startsrc command.

Environment variables can also be passed to the daemon through startsrc.
Environment variables for the daemon are specified with the startsrc -e flag.
The variables should be protected from interpretation by the shell using double
quotes. Figure 31 on page 55 shows an example of passing environment
variables to the daemon. The subsys01 subsystem is started, and values are
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specified for two environment variables, TEST1 and TEST2. The subsys01
subsystem is written to return the values of all environment variables when long
status is requested. The output shows that the TEST1 and TEST2 variables have
been set up correctly.

[it1n13] # startsrc -s subsys01 -a ″-p″ -e ″TEST1=value1 TEST2=value2″
0513-059 The subsys01 Subsystem has been started. Subsystem PID is 9996.

[it1n13] # lssrc -ls subsys01
Subsystem Group PID Status
 subsys01 daes 9996 active

TERM=dumb
AUTHSTATE=compat
SHELL=/bin/ksh
HOME=/
USER=root
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin
TZ=EST5EDT
LANG=C
LOCPATH=/usr/lib/nls/loc
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat
LC__FASTMSG=true
ODMDIR=/etc/objrepos
LOGNAME=root
LOGIN=root
TEST1=value1
TEST2=value2

Figure 31. Passing Parameters and Environment Variables to a Subsystem

When an environment variable is to contain a value which includes white space,
care should be taken. The environment variable, the equal sign, and the value
should be enclosed in escaped double quotes. Including only the value in
escaped double quotes does not work properly. See Figure 32 on page 56 for
an example of correct operation.
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[it1n13] # stopsrc -s subsys01
0513-044 The stop of the subsys01 Subsystem was completed successfully.

[it1n13] # startsrc -s subsys01 -e ″\″TEST1=multi word value\″ TEST2=value2″
0513-059 The subsys01 Subsystem has been started. Subsystem PID is 10004.

[it1n13] # lssrc -ls subsys01
Subsystem Group PID Status
 subsys01 daes 10004 active

TERM=dumb
AUTHSTATE=compat
SHELL=/bin/ksh
HOME=/
USER=root
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin
TZ=EST5EDT
LANG=C
LOCPATH=/usr/lib/nls/loc
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat
LC__FASTMSG=true
ODMDIR=/etc/objrepos
LOGNAME=root
LOGIN=root
TEST1=multi word value
TEST2=value2

Figure 32. Passing a Mult i-Word Environment Value to a Subsystem

See the startsrc man page in AIX Version 4.1: Command Reference, SBOF-1851
for detailed information about the startsrc command.

5.1.4 The refresh Command
The refresh command allows a system administrator to request that a
subsystem refresh itself. The meaning of the refresh operation is
subsystem-dependent. However, a common meaning of the operation is for the
subsystem to re-read its configuration file. For example, when the refresh
command is applied to the inetd subsystem, the inetd daemon re-reads its
configuration file, /etc/inetd.conf. This is illustrated in Figure 33 on page 57.
The first egrep command shows that the ftp service is defined in
/etc/inetd.conf. Then, the vi editor is used to comment out the service
definition. The second egrep command shows this was done in the vi edit
session. However, the ftp command on the it1n14 system can communicate
with the ftp subsystem on the it1n13 system. Next, the refresh command is
applied to the inetd subsystem. This causes inetd to re-read /etc/inetd.conf.
Now, the ftp command on the it1n14 system cannot communicate with the ftp
subsystem on the it1n13 system.
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[it1n13] # egrep ″^ftp|^#ftp″ /etc/inetd.conf
ftp stream tcp nowait root /usr/sbin/ftpd ftpd

[it1n13] # vi /etc/inetd.conf

[it1n13] # egrep ″^ftp|^#ftp″ /etc/inetd.conf
#ftp stream tcp nowait root /usr/sbin/ftpd ftpd

[it1n14] # ftp it1n13.aix.kingston.ibm.com
Connected to it1n13.aix.kingston.ibm.com.
220 it1n13.aix.kingston.ibm.com FTP server (Version 4.1 Sat Aug 27 17:18:21 CDT
1994) ready.
Name (it1n13.aix.kingston.ibm.com:agar):
331 Password required for agar.
Password:
230 User agar logged in.
ftp> ls -C
200 PORT command successful.
150 Opening data connection for /bin/ls.
dae daes.xopen logging.tar sig_stdio timings
dae.msgq daes_scripts parentid test
dae.xopen freeterm sig_reentr tests
daes info sig_reentr.tar threads
daes.msgq logging sig_restart threads.tar
226 Transfer complete.
ftp> quit
221 Goodbye.
[it1n14] #

[it1n13] # refresh -s inetd
0513-095 The request for subsystem refresh was completed successfully.

[it1n14] # ftp it1n13.aix.kingston.ibm.com
ftp: connect: A remote host refused an attempted connect operation.
ftp> quit

Figure 33. Example of the refresh Command

The refresh command only succeeds when it is applied to a subsystem
supporting message queue or socket communication from srcmstr.

See the refresh man page in AIX Version 4.1: Command Reference, SBOF-1851
for detailed information about the refresh command.
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5.1.5 The traceson and tracesoff Commands
The traceson command can be used to ask a subsystem to trace itself. Two
types of tracing are supported by traceson: short tracing and long tracing. The
tracesoff command can be used to ask a subsystem to stop tracing itself. The
meaning of tracing is subsystem-dependent.

The inetd subsystem supports a debugging mode that can be turned on with
traceson, and off with tracesoff. The output from a long status request to inetd
indicates whether inetd is running in debug mode. See Figure 34. When inetd
is running in debug mode, it logs debug entries into the system log. See the
example in Figure 35 on page 59. Before placing inetd in debug mode, the
syslogd configuration is changed so daemon log entries are placed in a file
named /tmp/daemon.log. The file is created with the touch command19; the
syslogd configuration file, /etc/syslog.conf, is updated; and the refresh
command is applied to the syslogd daemon, causing it to re-read
/etc/syslog.conf. Next, long status output shows that syslogd will now place
daemon log entries in the desired file. Next, the traceson command is used to
put inetd into debug mode. From another system, an ftp client connects to the
ftp daemon on the system whose inetd daemon is in debug mode. Finally, the
contents of /tmp/daemon.log are examined. The inetd daemon has logged debug
entries into the file through syslogd.

# lssrc -ls inetd | grep ″^Debug″
Debug Inactive

# traceson -s inetd
0513-091 The request to turn on tracing was completed successfully.

# lssrc -ls inetd | grep ″^Debug″
Debug Active

# tracesoff -s inetd
0513-093 The request to turn off tracing was completed successfully.

# lssrc -ls inetd | grep ″^Debug″
Debug Inactive

Figure 34. Example of the traceson and tracesoff Commands

19 Before starting to log to a file, the file must exist. The syslogd daemon will not create a log file.
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[it1n13] # lssrc -ls syslogd
Subsystem Group PID Status
 syslogd ras 4960 active

[it1n13] # grep ″^daemon″ /etc/syslog.conf
[it1n13] # touch /tmp/daemon.log
[it1n13] # vi /etc/syslog.conf
[it1n13] # grep ″^daemon″ /etc/syslog.conf
daemon.debug /tmp/daemon.log

[it1n13] # refresh -s syslogd
0513-095 The request for subsystem refresh was completed successfully.

[it1n13] # lssrc -ls syslogd
Subsystem Group PID Status
 syslogd ras 4960 active

Syslogd Config daemon.debug /tmp/daemon.log

[it1n13] # traceson -s inetd
0513-091 The request to turn on tracing was completed successfully.

[it1n13] # lssrc -ls inetd | grep ″^Debug″
Debug Active

[it1n14] # ftp it1n13.aix.kingston.ibm.com
Connected to it1n13.aix.kingston.ibm.com.
220 it1n13.aix.kingston.ibm.com FTP server (Version 4.1 Sat Aug 27 17:18:21 CDT
1994) ready.
Name (it1n13.aix.kingston.ibm.com:agar):
331 Password required for agar.
Password:
230 User agar logged in.
ftp> quit
221 Goodbye.

[it1n13] # cat /tmp/daemon.log
.
.

Apr 13 23:26:18 it1n13 inetd[5376]: REDO: ttdbserverd proto=tcp, wait=1,
user=root builtin=0 server=/usr/dt/bin/rpc.ttdbserverd
Apr 13 23:27:28 it1n13 inetd[5376]: someone wants ftp
Apr 13 23:27:28 it1n13 inetd[5376]: accept, ctrl 34
Apr 13 23:27:36 it1n13 inetd[5376]: 13376 reaped

Figure 35. Using traceson to Turn on Daemon Debugging

Many daemons that use TCP/IP sockets to communicate with clients allow for
the generation of TCP trace records. Such a daemon generates TCP trace
records when in debugging mode. To generate TCP trace records, a daemon
turns on the SO_DEBUG socket option for its TCP/IP sockets. Such a daemon
usually allows for an argument that, when specified, will cause the daemon to
start in debugging mode. When such a daemon is running under the control of
the SRC, the daemon should also support the traceson and tracesoff commands.
When the traceson command is applied to the daemon, the daemon enters
debugging mode, turning on SO_DEBUG for its TCP/IP sockets. When the tracesoff
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command is applied to the daemon, the daemon leaves debugging mode, turning
off SO_DEBUG for its TCP/IP sockets. The superuser can use the trpt command to
query the TCP trace records.

Here is a partial list of AIX daemons that support the generation of TCP trace
records when placed in debug mode by traceson: inetd, rwhod, routed, named,
iptrace, lpd, sendmail, and syslogd. Many other daemons support this feature
indirectly as a result of being under inetd control.

In Figure 36 on page 61, the subsys01 daemon is a concurrent server that reads
ASCII text supplied by clients, edits the text, and returns the results to the
clients. Communications between the server and the clients is through TCP/IP.
In the figure, subsys01 is started by the SRC. The traceson command is then
used to put the daemon in debugging mode; the subsys01 daemon turns on the
SO_DEBUG socket option for the socket on which it waits for client connections.
The trpt command is then run to follow TCP trace records. When a client
connects with subsys01 (not shown), trpt starts displaying TCP trace records.
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[it1n13] # startsrc -s subsys01
0513-059 The subsys01 Subsystem has been started. Subsystem PID is 8620

[it1n13] # traceson -l -s subsys01
0513-091 The request to turn on tracing was completed successfully.

[it1n13] # trpt -f -s -a

.

.

.

522 ESTABLISHED:user SEND -> ESTABLISHED
rcv_nxt 1d05455 rcv_wnd 4000 snd_una 9549e95c snd_nxt 9549e990 snd_max 9

549e990
snd_wl1 1d0544f snd_wl2 9549e95c snd_wnd 4000

522 ESTABLISHED:input (src=9.117.10.14,2070,
dst=129.40.93.113,25)1d05455@9549e9
90(win=4000)<ACK,FIN> -> CLOSE_WAIT

rcv_nxt 1d05456 rcv_wnd 4000 snd_una 9549e990 snd_nxt 9549e990 snd_max 9
549e990

snd_wl1 1d05455 snd_wl2 9549e990 snd_wnd 4000
522 CLOSE_WAIT:output (src=129.40.93.113,25,
dst=9.117.10.14,2070)9549e990@1d054
56(win=4000)<ACK> -> CLOSE_WAIT

rcv_nxt 1d05456 rcv_wnd 4000 snd_una 9549e990 snd_nxt 9549e990 snd_max 9
549e990

snd_wl1 1d05455 snd_wl2 9549e990 snd_wnd 4000
532 LAST_ACK:output (src=129.40.93.113,25,
dst=9.117.10.14,2070)9549e990@1d05456
(win=4000)<ACK,FIN> -> LAST_ACK

rcv_nxt 1d05456 rcv_wnd 4000 snd_una 9549e990 snd_nxt 9549e991 snd_max 9
549e991

snd_wl1 1d05455 snd_wl2 9549e990 snd_wnd 4000
532 CLOSE_WAIT:user DISCONNECT -> LAST_ACK

rcv_nxt 1d05456 rcv_wnd 4000 snd_una 9549e990 snd_nxt 9549e991 snd_max 9
549e991

snd_wl1 1d05455 snd_wl2 9549e990 snd_wnd 4000
532 LAST_ACK:user DETACH -> LAST_ACK

rcv_nxt 1d05456 rcv_wnd 4000 snd_una 9549e990 snd_nxt 9549e991 snd_max 9
549e991

snd_wl1 1d05455 snd_wl2 9549e990 snd_wnd 4000

Figure 36. Using traceson in Conjunction with the trpt Command

The traceson and tracesoff commands only succeed when applied to a
subsystem that supports message queue or socket communication from srcmstr.

See the traceson and tracesoff man pages in AIX Version 4.1: Command
Reference, SBOF-1851 for detailed information about these commands.
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5.1.6 Targeting Another Host
The SRC commands support the -h flag, whose argument is used to specify the
host name or IP address of another system to which the SRC request is to be
made. Scalable POWERparallel Systems, RS/6000 Division, does not use this
flag, for the following reasons:

• Requests and replies are sent in UDP/IP datagrams, which are not reliable.

• The mechanism requires entries in /etc/hosts.equiv, which is not considered
very secure.

Remote requests can be made through the distributed shell instead.

5.2 Subsystem Definition
SRC subsystems are defined in an ODM object class named SRCsubsys. The SRC
provides a command to define a subsystem, mkssys; a command to change the
definition of a subsystem, chssys; and a command to remove the definition of a
subsystem; rmssys. However, it does not provide a command to look at the
definition of a subsystem. To look at the definition of a subsystem, the ODM
command odmget is used.. Figure 37 shows the definition of the SRCsubsys object
class, as revealed by the odmshow command.

# odmshow SRCsubsys
class SRCsubsys {

char subsysname[30]; /* offset: 0xc ( 12) */
char synonym[30]; /* offset: 0x2a ( 42) */
char cmdargs[200]; /* offset: 0x48 ( 72) */
char path[200]; /* offset: 0x110 ( 272) */
long uid; /* offset: 0x1d8 ( 472) */
long auditid; /* offset: 0x1dc ( 476) */
char standin[200]; /* offset: 0x1e0 ( 480) */
char standout[200]; /* offset: 0x2a8 ( 680) */
char standerr[200]; /* offset: 0x370 ( 880) */
short action; /* offset: 0x438 ( 1080) */
short multi; /* offset: 0x43a ( 1082) */
short contact; /* offset: 0x43c ( 1084) */
long svrkey; /* offset: 0x440 ( 1088) */
long svrmtype; /* offset: 0x444 ( 1092) */
short priority; /* offset: 0x448 ( 1096) */
short signorm; /* offset: 0x44a ( 1098) */
short sigforce; /* offset: 0x44c ( 1100) */
short display; /* offset: 0x44e ( 1102) */
short waittime; /* offset: 0x450 ( 1104) */
char grpname[30]; /* offset: 0x452 ( 1106) */
};

/*
 columns: 20

structsize: 0x470 (1136) bytes
data offset: 0x514
population: 24 objects (24 active, 0 deleted)

*/

Figure 37. The Definit ion of the SRCsubsys ODM Object Class

The fields have the following meanings:
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• The subsysname field specifies the name of the subsystem. The name cannot
exceed 30 bytes, including the null terminator. A value for this field is
required. The value is specified with the -s flag of the mkssys command.

• The synonym field specifies a character string to be used as an alternate
name for the subsystem. The character string cannot exceed 30 bytes,
including the null terminator. A value for this field is not required. The value
is specified with the -t flag of the mkssys command.

• The cmdargs field specifies any arguments that must be passed to the
command that starts the subsystem. The arguments cannot exceed 200
bytes, including the null terminator. The arguments are parsed by the
srcmstr daemon according to the same rules used by shells. For example, a
quoted string is passed as a single argument, and blanks outside quoted
strings delimit arguments. A value for this field is not required. The value is
specified with the -a flag of the mkssys command.

• The path field specifies the full path name for the program executed by the
subsystem start command. The path name cannot exceed 200 bytes,
including the null terminator. A value for this field is required. The value is
specified with the -p flag of the mkssys command.

• The uid field specifies the user ID (numeric) under which the subsystem is
run. A value of 0 indicates the root user. A value for this field is required.
The value is specified with the -u flag of the mkssys command.

• The auditid field specifies the subsystem audit ID. Created automatically by
the srcmstr daemon when a subsystem is defined, this field is used by the
security system, if configured. This field cannot be set or changed by a
program.

• The standin field specifies the file or device associated with file descriptor 0
when the subsystem′s process is started by srcmstr. The default is
/dev/console. The value of this field cannot exceed 200 bytes, including the
null terminator. This field is ignored if the communication type is sockets. A
value for this field is specified with the -i flag of the mkssys command.

• The standout field specifies the file or device associated with file descriptor 1
when the subsystem′s process is started by srcmstr. The default is
/dev/console. The value of this field cannot exceed 200 bytes, including the
null terminator. A value for this field is specified with the -o flag of the
mkssys command.

• The standerr field specifies the file or device associated with file descriptor 2
when the subsystem′s process is started by srcmstr. The default is
/dev/console. The value of this field cannot exceed 200 bytes, including the
null terminator. A value for this field is specified with the -e flag of the
mkssys command.

• The action field specifies whether the srcmstr daemon should restart the
subsystem after an abnormal termination. A value of 1 specifies the srcmstr
daemon should restart the subsystem. A value of 2 specifies the srcmstr
daemon should not attempt to restart the failed subsystem. There is a
respawn limit of two restarts within the time specified by the waittime field.
If the failed subsystem cannot be successfully restarted, a notification
method may be executed (see 5.4, “Subsystem Failure, Respawning, and
Notification” on page 73). The default value is 2; meaning no respawn is
attempted. A value for this field is specified with the -R flag (meaning
respawn) or the -O flag (meaning execute once) of the mkssys command.
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• The multi field specifies whether multiple instances of a subsystem are
allowed to run at one time. A value of 0 specifies that only one instance of
the subsystem is allowed to run at one time. Attempts to start this
subsystem when it is already running will fail, as will attempts to start a
subsystem on the same IPC message queue key. A value of 1 specifies that
multiple subsystems are allowed to use the same IPC message queue and
that multiple instances of the same subsystem are allowed. The default
value is 0. A value for this field is specified with the -Q flag (meaning only
one instance) or the -q flag (meaning multiple instances) of the mkssys
command.

• The contact field specifies the communication method used by the srcmstr
daemon to send requests to the subsystem. A value of 1 specifies System V
message queue communication. A value of 2 specifies signal
communication. A value of 3 specifies BSD socket communication. The
default value is 3. A value for this field is specified with the -I flag (meaning
message queues), the -S flag (meaning signals), or the -K flag (meaning
sockets) of the mkssys command.

• The svrkey field specifies a decimal value that corresponds to the IPC
message queue key that the srcmstr daemon uses to communicate to the
subsystem. A value for this field is required for subsystems that specify
message queue communication in the contact field. Use the ftok subroutine
with a fully qualified path name and an ID parameter to ensure that this key
is unique. The srcmstr daemon creates the message queue prior to starting
the subsystem. A value for this field is specified with the -I flag of the
mkssys command.

• The svrmtype field specifies the message type of the message that is placed
on the subsystem′s message queue. The subsystem uses this value to
retrieve messages by using the msgrcv or msgxrcv subroutine. A value for
this field is required if the subsystem specifies message queue
communication in the contact field. A value for this field is specified with the
-m flag of the mkssys command.

• The priority field specifies the nice value with which the subsystem is to
run. The default value is 20. A value for this field is specified with the -E
flag of the mkssys command20.

• The signorm field specifies the signal to be sent to the subsystem when a
stop normal request is to be made. A value for this field is required for
subsystems that specify signal communication in the contact field. A value
for this field is specified with the -n flag of the mkssys command.

• The sigforce field specifies the signal to be sent to the subsystem when a
stop forced request is to be made. A value for this field is required for
subsystems that specify signal communication in the contact field. A value
for this field is specified with the -f flag of the mkssys command.

• The display field value indicates whether the status of an inoperative
subsystem can be displayed in lssrc -a or lssrc -g output. A value of 1
allows the status to be displayed; a value of 0 does not allow the status to be
displayed. The default value is 1. A value for this field is specified with the
-d flag (meaning display) or the -D flag (meaning do not display) of the mkssys
command.

20 When the priority field of a subsystem is set to 0, the subsystem is run with the default nice value, 20. This has been
reported as a defect.
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• The waittime field specifies the time in seconds that a subsystem has to
complete a stop cancel request before being sent the SIGKILL signal. The
value also has an effect on attempts to respawn the subsystem; see the
description of the action field. The default value is 20 seconds. A value for
this field can be specified with the -w flag of the mkssys command.

• The grpname field designates the subsystem as a member of a group of
subsystems. The value of this field cannot exceed 30 bytes, including the
null terminator. If the value of this field is the null string, the subsystem
does not belong to a group. A value for this field can be specified with the
-G flag of the mkssys command

When a subsystem is defined to accept signal communication from srcmstr, the
requests that can be sent to the subsystem are:

• Stop Normal. This request is made of the subsystem by sending a signal,
whose number is provided in the signorm field of the subsystem′s definition,
to the subsystem′s process. This request can be made as a result of
executing the stopsrc command without specifying the -f flag or the -c flag.

• Stop Forced. This request is made of the subsystem by sending a signal,
whose number is provided in the sigforce field of the subsystem′s definition,
to the subsystem′s process. This request can be made as a result of
executing the stopsrc command, specifying the -f flag.

• Stop Cancel. This request is made of the subsystem by sending the SIGTERM
signal to the subsystem′s process. If the subsystem has not terminated in a
certain number of seconds, specified in the waittime field of the subsystem′s
definition, the subsystem′s process is sent the SIGKILL signal. This request
can be made as a result of executing the stopsrc command, specifying the -c
flag.

When a subsystem is defined to accept socket communication from srcmstr,
most of the requests that are sent to the subsystem are sent through a UNIX
domain socket. The srcmstr daemon creates this socket and associates it with
file descriptor 0 of the subsystem process before calling an exec function to
execute the subsystem′s program. The subsystem′s program must read
requests from the socket it finds associated with file descriptor 0. The requests
that can be sent from srcmstr to such a subsystem are:

• Stop Normal. This request is made of the subsystem by sending a packet to
the subsystem′s SRC request socket. This request can be made as a result
of executing the stopsrc command without specifying the -f flag or the -c
flag.

• Stop Forced. This request is made of the subsystem by sending a packet to
the subsystem′s SRC request socket. This request can be made as a result
of executing the stopsrc command, specifying the -f flag.

• Stop Cancel. This request is made of the subsystem by sending the SIGTERM
signal to the subsystem′s process. If the subsystem has not terminated in a
certain number of seconds, specified in the waittime field of the subsystem′s
definition, the subsystem′s process is sent the SIGKILL signal. Notice that
signals are used to send the stop cancel request, even when the subsystem
is defined to accept requests through a socket. This request is made as a
result of executing the stopsrc command, specifying the -c flag.

• Long Status. This request is made of the subsystem by sending a packet to
the subsystem′s SRC request socket. This request can be made as a result
of executing the lssrc command, specifying the -l flag.
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• Start Tracing. This request is made of the subsystem by sending a packet to
the subsystem′s SRC request socket. This request can be made as a result
of executing the traceson command. If the -l flag is specified with the
traceson command, the request is for long tracing; otherwise, the request is
for short tracing.

• End Tracing. This request is made of the subsystem by sending a packet to
the subsystem′s SRC request socket. This request can be made as a result
of executing the tracesoff command.

• Refresh. This request is made of the subsystem by sending a packet to the
subsystem ′s SRC request socket. This request can be made as a result of
executing the refresh command.

When a subsystem is defined to accept message queue communication from
srcmstr, most of the requests that are sent to the subsystem are sent through a
message queue. The srcmstr daemon creates this message queue using the key
provided by the svrkey key field in the subsystem′s definition. The subsystem′s
program must read requests from this queue. The requests that can be sent
from srcmstr to such a subsystem are identical to the requests that can be sent
to a subsystem supporting socket communication from srcmstr. The only
difference between subsystems defined with message queue communication and
those defined with socket communication is the mechanism through which the
SRC requests are made. As for all other subsystems, srcmstr makes a stop
cancel request using the SIGTERM and SIGKILL signals.

Figure 38 on page 67 shows the definition of the writesrv subsystem, and a
mkssys command that could have created that definition. The odmget command is
used to retrieve the definition from the SRCsubsys object class. The argument to
the -q flag limits the output to the writesrv subsystem definition. The action
field has a value of 1, indicating that the SRC will attempt to respawn writesrv if
it terminates unexpectedly. The multi field has a value of 0, indicating the SRC
will only allow one instance of writesrv to run at a time. The contact field has a
value of 2, indicating srcmstr will send requests to writesrv using signals. The
value of the signorm field is 30; stop normal requests will be made to writesrv by
sending signal 30, SIGUSR1. The value of the sigforce field is 31; stop forced
requests will be made to writesrv by sending signal 31, SIGUSR2. As with all SRC
subsystems, stop cancel requests will be made to writesrv by sending the
SIGTERM signal, followed by the SIGKILL signal, if needed. Since the value of the
waittime field is 20, writesrv will have at least 20 seconds to terminate itself
when receiving the SIGTERM signal.
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# odmget -q ″subsysname = ′ writesrv′ ″  SRCsubsys

SRCsubsys:
subsysname = ″writesrv″
synonym = ″″
cmdargs = ″″
path = ″ /usr/sbin/writesrv″
uid = 0
auditid = 0
standin = ″ /dev/console″
standout = ″ /dev/console″
standerr = ″ /dev/console″
action = 1
multi = 0
contact = 2
svrkey = 0
svrmtype = 0
priority = 20
signorm = 30
sigforce = 31
display = 1
waittime = 20
grpname = ″spooler″

# mkssys -s writesrv -p /usr/sbin/writesrv -u 0 -R -S -n 30 -f 31 -G spooler
0513-075 The new subsystem name is already on file.

Figure 38. The Definit ion of the writesrv Subsystem

Figure 39 on page 68 shows the definition of the inetd subsystem, and a mkssys
command that could have created that definition. The action field has a value of
2, indicating the SRC will not attempt to respawn inetd if it terminates
unexpectedly. The multi field has a value of 0, indicating the SRC will only allow
one instance of inetd to run at a time. The contact field has a value of 3,
indicating srcmstr will send requests to inetd using a UNIX domain socket. As
with all SRC subsystems, stop cancel requests will be made to inetd by sending
the SIGTERM signal, followed by the SIGKILL signal, if needed. Since the value of
the waittime field is 20, inetd will have at least 20 seconds to terminate itself
when receiving the SIGTERM signal.
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# odmget -q ″subsysname = ′ inetd′ ″  SRCsubsys

SRCsubsys:
subsysname = ″inetd″
synonym = ″″
cmdargs = ″″
path = ″ /usr/sbin/inetd″
uid = 0
auditid = 0
standin = ″ /dev/console″
standout = ″ /dev/console″
standerr = ″ /dev/console″
action = 2
multi = 0
contact = 3
svrkey = 0
svrmtype = 0
priority = 20
signorm = 0
sigforce = 0
display = 1
waittime = 20
grpname = ″tcpip″

# mkssys -s inetd -p /usr/sbin/inetd -u 0 -G tcpip
0513-075 The new subsystem name is already on file.

Figure 39. The Definit ion of the inetd Subsystem

It is anticipated that most subsystems defined by Scalable POWERparallel
Systems, RS/6000 Division, will be defined by executing the mkssys command in
post-installation scripts. Some subsystems may be defined at other times. For
example, the creation of an additional partition in an RS/6000 SP system may
involve the definition of additional subsystems that are to run on a control
workstation to support the new partition.

It is anticipated that usually subsystem definitions will be manipulated using the
mkssys, chssys, and rmssys commands. However, the SRC also provides C
language routines to manipulate subsystem definitions. The routines are
addssys, chssys, defssys, delssys, and getssys; they are in the libsrc.a l ibrary.

5.3 Subsystem User ID
When a subsystem is defined, the user under which the subsystem is to run is
specified. This user ID of the user is specified with the -u flag of the mkssys
command, and stored in the uid field of the SRCsubsys object class. Often, the
user ID that is specified is 0, which is the user ID for the superuser, root. It may
be desirable for the subsystem to run under a user other than root, but there
are some restrictions to what is possible.

If the subsystem is defined to receive requests from the SRC through signals,
there are no limitations originating from the SRC as to the user under which the
subsystem may successfully run.
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If the subsystem is defined to receive requests from the SRC through a message
queue or a socket, the SRC does create limitations on the users that may
successfully run the subsystem. In these cases, the subsystem must be run by
the superuser (the user with user ID 0) or by a user in the system group (the
group with group ID 0). These limitations originate from the mechanisms used to
reply to SRC requests and to send requests to the SRC daemon. When a
subsystem replies to SRC requests delivered from a message queue or socket, it
uses the srcsrpy routine to send the reply21. The srcsrpy routine creates a
socket in a directory named /dev/.SRC-unix. A process must be running with an
effective user ID of 0 or an effective group ID of 0 in order to be able to create
the socket in this directory. Sometimes a subsystem may need to send a
request to the SRC daemon. For example, it is common for a subsystem to get
the short status output for itself from the SRC daemon. The SRC daemon
verifies that the socket through which it is receiving a request was created by
user ID 0 or group ID 0. If the socket was not created by user ID 0 or group ID 0,
the request is rejected.

Figure 40 on page 70 illustrates what happens when a subsystem is run under
various users. In Figure 40, part �1�, the odmget command shows the definition
of the subsys01 subsystem. The odmget output indicates that the subsys01
subsystem is defined to run under the root user (the value for the uid field is 0),
and the subsystem will receive requests from the SRC through a socket (the
value for the contact field is 3). As defined, the subsystem can be successfully
started, and the ps command output shows that the subsystem runs under the
root user. The subsystem trace on request and subsystem stop normal request
can be successfully sent to the subsystem, and the subsystem can reply to the
requests.

21 Use of the srcsrpy routine is discussed in 5.6, “Programming for the SRC in a Daemon” on page 84.
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�1�
# odmget -q ″subsysname = ′ subsys01′ ″  SRCsubsys

SRCsubsys:
subsysname = ″subsys01″
synonym = ″″
cmdargs = ″-l /tmp/subsys01.SRC″
path = ″ /usr/lpp/somelpp/bin/subsys01″
uid = 0
auditid = 0
standin = ″ /dev/null″
standout = ″ /dev/null″
standerr = ″ /dev/null″
action = 2
multi = 0
contact = 3
svrkey = 0
svrmtype = 0
priority = 20
signorm = 0
sigforce = 0
display = 1
waittime = 20
grpname = ″daes″

# startsrc -s subsys01
0513-059 The subsys01 Subsystem has been started. Subsystem PID is 6426.

# ps -p 6426 -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

 340401 A 0 6426 3946 0 60 20 a32a 168 - 0:00 subsys01

# traceson -s subsys01
Short tracing logged to /tmp/subsys01.SRC.6426.
0513-091 The request to turn on tracing was completed successfully.

# stopsrc -s subsys01
0513-044 The stop of the subsys01 Subsystem was completed successfully.

Figure 40 (Part 1 of 3). Running an SRC Subsystem under Various Users
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�2�
# grep subsys01 /etc/passwd
subsys01:!:202:0::/:

# grep system /etc/group
system:!:0:subsys01,root

# chssys -s subsys01 -u 202
0513-077 Subsystem has been changed.

# odmget -q ″subsysname = ′ subsys01′ ″  SRCsubsys

SRCsubsys:
subsysname = ″subsys01″
synonym = ″″
cmdargs = ″-l /tmp/subsys01.SRC″
path = ″ /usr/lpp/somelpp/bin/subsys01″
uid = 202
auditid = 0
standin = ″ /dev/null″
standout = ″ /dev/null″
standerr = ″ /dev/null″
action = 2
multi = 0
contact = 3
svrkey = 0
svrmtype = 0
priority = 20
signorm = 0
sigforce = 0
display = 1
waittime = 20
grpname = ″daes″

# startsrc -s subsys01
0513-059 The subsys01 Subsystem has been started. Subsystem PID is 6444.

# ps -p 6444 -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

340401 A 202 6444 3946 0 60 20 2322 168 - 0:00 subsys01

# traceson -s subsys01
Short tracing logged to /tmp/subsys01.SRC.6444.
0513-091 The request to turn on tracing was completed successfully.

# stopsrc -s subsys01
0513-044 The stop of the subsys01 Subsystem was completed successfully.

Figure 40 (Part 2 of 3). Running an SRC Subsystem under Various Users
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�3�
# grep agar /etc/passwd
agar:!:200:1:Eric M. Agar:/u/agar:/bin/ksh

# chssys -s subsys01 -u 200
0513-077 Subsystem has been changed.

# odmget -q ″subsysname = ′ subsys01′ ″  SRCsubsys

SRCsubsys:
subsysname = ″subsys01″
synonym = ″″
cmdargs = ″-l /tmp/subsys01.SRC″
path = ″ /usr/lpp/somelpp/bin/subsys01″
uid = 200
auditid = 0
standin = ″ /dev/null″
standout = ″ /dev/null″
standerr = ″ /dev/null″
action = 2
multi = 0
contact = 3
svrkey = 0
svrmtype = 0
priority = 20
signorm = 0
sigforce = 0
display = 1
waittime = 20
grpname = ″daes″

# startsrc -s subsys01
0513-059 The subsys01 Subsystem has been started. Subsystem PID is 6462.

# ps -p 6462 -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

340401 A 200 6462 3946 0 60 20 1c31c 168 - 0:00 subsys01

# traceson -s subsys01
0513-056 Timeout waiting for command response.

# stopsrc -s subsys01
0513-056 Timeout waiting for command response
.
# lssrc -s subsys01
Subsystem Group PID Status
 subsys01 daes inoperative

Figure 40 (Part 3 of 3). Running an SRC Subsystem under Various Users

In Figure 40, part �2�, the subsys01 subsystem is run under a different user. The
first grep command shows the definition of the subsys01 user in /etc/passwd. The
subsys01 user has a user ID of 202, and belongs to a group with group ID of 0.
The second grep command shows the definition of the system group in
/etc/group. The system group has group ID 0. The chssys command is used to
change the definition of the subsys01 subsystem so that it is run under the
subsys01 user. The odmget command shows the change in the subsys01 definition
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took effect; the value of the uid field is now 202. As defined, the subsystem can
be successfully started, and the ps command output shows the subsystem runs
under the subsys01 user. The subsystem trace on and subsystem stop normal
requests can be successfully sent to the subsystem, and the subsystem can
reply to the requests.

In Figure 40, part �3�, the subsys01 subsystem is run under yet another user.
The grep command shows the definition of the agar user in /etc/passwd. The
agar user has a user ID of 200, and belongs to a group with group ID of 1. Recall
from the definition of the system group shown in part �2� that the agar user does
not belong to the system group. The chssys command is used to change the
definition of the subsys01 subsystem so that it is run under the agar user. The
odmget command shows that the change in the subsys01 definition took effect; the
value of the uid field is now 200. As defined, the subsystem can be successfully
started, and the ps command output shows the subsystem runs under the agar
user. However, the subsystem trace on and subsystem stop normal requests do
not appear to work. The traceson and stopsrc commands return with an error
message, indicating that the commands did not receive replies to the requests.
The subsys01 subsystem was able to receive these requests, but when it
attempted to send a reply by calling srcsrpy, the necessary socket could not be
created. The traceson and stopsrc commands timed out after waiting for a
response. The lssrc command shows that the subsystem actually did receive
the subsystem stop normal request, and it acted upon the request.

5.4 Subsystem Failure, Respawning, and Notification
Since an SRC-controlled daemon runs in a child process of srcmstr, the srcmstr
process receives a SIGCHLD signal when the daemon terminates. When srcmstr
receives notification of the termination of a subsystem, the SRC considers the
termination abnormal if the srcmstr process had not sent a stop request to the
subsystem.

When an abnormal termination is detected, the actions taken by srcmstr depend
on the definition of the subsystem. If the subsystem is defined to not permit
respawning, srcmstr logs an entry in the AIX error log, and determines if there is
an SRC notification method that should be run. The subsystem is not run again
until a startsrc command is executed specifying it. SRC notification methods
will be discussed later.

If the subsystem is defined to permit respawning, and the subsystem is not
respawning too quickly, srcmstr logs an entry in the AIX error log, and respawns
the subsystem. If the subsystem is defined to permit respawning, and the
subsystem is respawning too quickly, srcmstr logs an entry in the AIX error log,
and determines if there is an SRC notification method that should be run. A
subsystem is respawning too quickly if it has just been respawned twice within
the time specified by waittime in the subsystem′s definition.
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5.4.1 Subsystem Failure
To illustrate the actions taken by srcmstr when a subsystem terminates
abnormally, the shell script in Figure 41 is defined. The shell script, named
sleepy_daemon, takes one parameter, the number of seconds to sleep. If no time
is specified, sleepy_daemon will sleep for 5 seconds. The shell script prints a
message, which includes the PID of the process running it and the number of
seconds it will sleep, on its standard output. Then, the shell script puts the
process to sleep. Once the process wakes from the sleep, it exits. It uses the
number of seconds it slept as its exit value. Obviously, this shell script is not
designed to be a useful daemon, but it will illustrate what srcmstr does in the
face of abnormal subsystem termination.

# cat /u/agar/tests/sleepy_daemon
#!/bin/ksh

if [[ $# -ge 1 ]]; then
sleep_time=$1

else
sleep_time=5

fi

print ″\nsleepy_daemon: process $$ about to sleep for ${sleep_time} seconds.″

sleep ${sleep_time}

print ″sleepy_daemon: goodbye cruel world.″

exit ${sleep_time}

Figure 41. The Source for the sleepy_daemon Test Script

In Figure 42 on page 75, sleepy_daemon is defined to the SRC as a subsystem
that will accept signal communication. The stop normal and stop forced signals
are defined to be SIGTERM. This allows sleepy_daemon to not install signal
handlers, because the default disposition for SIGTERM is process termination.
Notice the value of the action field is 2, indicating srcmstr will not restart
sleepy_daemon if it terminates abnormally. Also, notice that when sleepy_daemon is
run by the SRC, its standard output will go to the console, /dev/console. After
the subsystem is defined, the swcons command is used to redirect console output
to the terminal on which the commands are being entered. This will allow us to
observe the output of sleepy_daemon. Next, the startsrc command is used to
start sleepy_daemon. The subsystem announces it will sleep for 5 seconds, does
so, announces it will terminate, and presumably does that also. The lssrc
command shows the subsystem is inoperative. If sleepy_daemon were respawned,
we would expect further output, but none occurs.
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# mkssys -s sleepy_daemon -p /u/agar/tests/sleepy_daemon -u 0 -S -n 15 -f 15
0513-071 The sleepy_daemon Subsystem has been added.

# odmget -q ″subsysname = ′ sleepy_daemon′ ″  SRCsubsys

SRCsubsys:
subsysname = ″sleepy_daemon″
synonym = ″″
cmdargs = ″″
path = ″ /u/agar/tests/sleepy_daemon″
uid = 0
auditid = 0
standin = ″ /dev/console″
standout = ″ /dev/console″
standerr = ″ /dev/console″
action = 2
multi = 0
contact = 2
svrkey = 0
svrmtype = 0
priority = 20
signorm = 15
sigforce = 15
display = 1
waittime = 20
grpname = ″″

# swcons $(tty)

# startsrc -s sleepy_daemon
0513-059 The sleepy_daemon Subsystem has been started. Subsystem PID is 9064.
#
sleepy_daemon: process 9064 about to sleep for 5 seconds.
sleepy_daemon: goodbye cruel world.

# lssrc -s sleepy_daemon
Subsystem Group PID Status
 sleepy_daemon inoperative
#

Figure 42. Running sleepy_daemon without Respawning

It was previously mentioned that when a subsystem that is not respawnable
terminates abnormally, srcmstr will place an entry in the AIX error log.
Figure 43 on page 76 shows the latest entry in the AIX error log with the SRC
label22. Look at the Detail Data, at the end of the entry. The SOFTWARE ERROR CODE
detail data provides an SRC error value. The possible values are defined in
/usr/include/srcerrno.h. The value -9017 means a subsystem terminated
abnormally. The ERROR CODE detail data provides the exit status of the subsystem
process interpreted as a signed decimal number. The value 1280 indicates that

22 All AIX error log entries may be viewed with the command: errpt -a | more.
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the subsystem exited with 5 as an exit value23. The FAILING MODULE detail data
provides the name of the subsystem that terminated abnormally; in this case it
was sleepy_daemon.

---------------------------------------------------------------------------
LABEL: SRC
IDENTIFIER: E18E984F

Date/Time: Fri Apr 14 20:31:49
Sequence Number: 249
Machine Id: 000175951000
Node Id: it1n13
Class: S
Type: PERM
Resource Name: SRC

Description
SOFTWARE PROGRAM ERROR

Probable Causes
APPLICATION PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
PERFORM PROBLEM RECOVERY PROCEDURES

Detail Data
SYMPTOM CODE

0
SOFTWARE ERROR CODE

-9017
ERROR CODE

1280
DETECTING MODULE
′ srchevn.c′ @line:′272′
FAILING MODULE
sleepy_daemon
---------------------------------------------------------------------------

Figure 43. AIX Error Log Entry for sleepy_daemon (Not Respawnable)

5.4.2 Subsystem Respawning
In Figure 44 on page 77, the SRC definition of sleepy_daemon is changed to cause
srcmstr to attempt to respawn the daemon when abnormal termination is
detected. This is done with the chssys command. Notice that the value of the
action field has changed to 1, indicating respawning is desired. After the
subsystem definition is changed, startsrc is used to start sleepy_daemon. The

23 The exit status of a process has information encoded in it, such as an exit value or the number of the signal that terminated
the process. The exit status can be interpreted with the macros defined in sys/wait.h. The dae_status program, described in
B.3, “dae_status(1)” on page 392, interprets exit status values with these macros.
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output indicates that the daemon was executed three times. This includes two
respawnings. The lack of further output indicates that srcmstr did not continue to
respawn the daemon.

# chssys -s sleepy_daemon -R
0513-077 Subsystem has been changed.

# odmget -q ″subsysname = ′ sleepy_daemon′ ″  SRCsubsys

SRCsubsys:
subsysname = ″sleepy_daemon″
synonym = ″″
cmdargs = ″″
path = ″ /u/agar/tests/sleepy_daemon″
uid = 0
auditid = 0
standin = ″ /dev/console″
standout = ″ /dev/console″
standerr = ″ /dev/console″
action = 1
multi = 0
contact = 2
svrkey = 0
svrmtype = 0
priority = 20
signorm = 15
sigforce = 15
display = 1
waittime = 20
grpname = ″″

# startsrc -s sleepy_daemon
0513-059 The sleepy_daemon Subsystem has been started. Subsystem PID is 8984.
#
sleepy_daemon: process 8984 about to sleep for 5 seconds.
sleepy_daemon: goodbye cruel world.

sleepy_daemon: process 8988 about to sleep for 5 seconds.
sleepy_daemon: goodbye cruel world.

sleepy_daemon: process 8992 about to sleep for 5 seconds.
sleepy_daemon: goodbye cruel world.

# lssrc -s sleepy_daemon
Subsystem Group PID Status
 sleepy_daemon inoperative

Figure 44. Running sleepy_daemon with Respawning

This attempt to run sleepy_daemon resulted in three entries being placed in the
AIX error log, one for each abnormal termination of the subsystem. The last AIX
error log entry for sleepy_daemon is shown in Figure 45, part �1�. The SOFTWARE
ERROR CODE is -9020; the /usr/include/srcerrno.h file indicates this value means
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the retry limit has been exceeded for the subsystem. The previous two AIX error
log entries for sleepy_daemon are shown in Figure 45, part �2� and part �3�. In
both these entries, the SOFTWARE ERROR CODE is -9035; according to
/usr/include/srcerrno.h, this value means the subsystem terminated abnormally,
and will be restarted.

�1�
---------------------------------------------------------------------------
LABEL: SRC
IDENTIFIER: E18E984F

Date/Time: Fri Apr 14 20:39:15
Sequence Number: 252
Machine Id: 000175951000
Node Id: it1n13
Class: S
Type: PERM
Resource Name: SRC

Description
SOFTWARE PROGRAM ERROR

Probable Causes
APPLICATION PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
PERFORM PROBLEM RECOVERY PROCEDURES

Detail Data
SYMPTOM CODE

0
SOFTWARE ERROR CODE

-9020
ERROR CODE

1280
DETECTING MODULE
′ srchevn.c′ @line:′265′
FAILING MODULE
sleepy_daemon
---------------------------------------------------------------------------

Figure 45 (Part 1 of 3). AIX Error Log Entry for sleepy_daemon (Respawnable)
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�2�
---------------------------------------------------------------------------
LABEL: SRC
IDENTIFIER: E18E984F

Date/Time: Fri Apr 14 20:39:09
Sequence Number: 251
Machine Id: 000175951000
Node Id: it1n13
Class: S
Type: PERM
Resource Name: SRC

Description
SOFTWARE PROGRAM ERROR

Probable Causes
APPLICATION PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
PERFORM PROBLEM RECOVERY PROCEDURES

Detail Data
SYMPTOM CODE

1280
SOFTWARE ERROR CODE

-9035
ERROR CODE

0
DETECTING MODULE
′ srchevn.c′ @line:′166′
FAILING MODULE
sleepy_daemon
---------------------------------------------------------------------------

Figure 45 (Part 2 of 3). AIX Error Log Entry for sleepy_daemon (Respawnable)
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�3�
---------------------------------------------------------------------------
LABEL: SRC
IDENTIFIER: E18E984F

Date/Time: Fri Apr 14 20:39:04
Sequence Number: 250
Machine Id: 000175951000
Node Id: it1n13
Class: S
Type: PERM
Resource Name: SRC

Description
SOFTWARE PROGRAM ERROR

Probable Causes
APPLICATION PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
PERFORM PROBLEM RECOVERY PROCEDURES

Detail Data
SYMPTOM CODE

1280
SOFTWARE ERROR CODE

-9035
ERROR CODE

0
DETECTING MODULE
′ srchevn.c′ @line:′166′
FAILING MODULE
sleepy_daemon
---------------------------------------------------------------------------

Figure 45 (Part 3 of 3). AIX Error Log Entry for sleepy_daemon (Respawnable)

5.4.3 Subsystem Notification
When a non-respawnable subsystem has terminated abnormally, or a
respawnable subsystem has terminated abnormally and reached its respawn
limit, srcmstr determines if there is an SRC notification method that should be
run. SRC notification methods are defined in the SRCnotify ODM object class.
Figure 46 on page 81 shows the definition of the SRCnotify object class. When
looking for a notification method to run, srcmstr first looks for an SRCnotify
object whose notifyname field contains the name of the subsystem that has
abnormally terminated. If such an entry is found, the program whose full path
name is in the entry′s notifymethod field is executed. If no object has a
notifyname that matches the subsystem name, srcmstr looks for an SRCnotify
object whose notifyname field contains the name of the group to which the failed
subsystem belongs. If such an entry is found, the program whose full path name
is in the entry′s notifymethod field is executed. If no object has a notifyname that
matches the group name, no notification method is executed. When a
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notification method is executed, it is passed two parameters: the name of the
failing subsystem, and the name of the group to which the subsystem belongs.

# odmshow SRCnotify
class SRCnotify {

char notifyname[30]; /* offset: 0xc ( 12) */
method notifymethod[256]; /* offset: 0x2a ( 42) */
};

/*
 columns: 2

structsize: 0x12c (300) bytes
data offset: 0x1bc
population: 0 objects (0 active, 0 deleted)

*/

Figure 46. The Definit ion of the SRCnotify ODM Object Class

Figure 47 on page 82 shows an example of an SRC notification method in use.
The shell script sleepy_notify is installed as an SRC notification method for the
sleepy_daemon subsystem using the mknotify command. The sleepy_notify script
is simple: it uses wall to send a message to every user on the system. The
sleepy_daemon subsystem is started with startsrc. The subsystem is respawned
twice before srcmstr gives up. When srcmstr gives up, it finds a notification
method defined for the sleepy_daemon subsystem, and runs the notification
method. The example shows that the wall command in the notification method
is executed. Finally, lssrc is run to verify that the subsystem is not running.
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# cat /u/agar/tests/sleepy_notify
#!/bin/ksh

wall ″Subsystem $1 terminated abnormally!″

exit 0

# mknotify -n sleepy_daemon -m /u/agar/tests/sleepy_notify
0513-068 The sleepy_daemon Notify method has been added.

# odmget -q ″notifyname = ′ sleepy_daemon′ ″  SRCnotify

SRCnotify:
notifyname = ″sleepy_daemon″
notifymethod = ″ /u/agar/tests/sleepy_notify″

# startsrc -s sleepy_daemon
0513-059 The sleepy_daemon Subsystem has been started. Subsystem PID is 9880.
#
sleepy_daemon: process 9880 about to sleep for 5 seconds.
sleepy_daemon: goodbye cruel world.

sleepy_daemon: process 9884 about to sleep for 5 seconds.
sleepy_daemon: goodbye cruel world.

sleepy_daemon: process 9888 about to sleep for 5 seconds.
sleepy_daemon: goodbye cruel world.

Broadcast message from UNKNOWN@it1n13.aix.kingston.ibm.com (tty) at 20:52:45
...

Subsystem sleepy_daemon terminated abnormally!

# lssrc -s sleepy_daemon
Subsystem Group PID Status
 sleepy_daemon inoperative

Figure 47. Using an SRC Notification Method

Figure 48 on page 83 illustrates that a subsystem can be respawned often if the
subsystem does not fail three times within the subsystem′s waittime value. In
the figure, sleepy_daemon is started with a parameter of 60, causing the
subsystem to sleep 60 seconds. So, sleepy_daemon abnormally terminates about
once every 60 seconds. Recall from Figure 44 on page 77, that the waittime
value for sleepy_daemon is 20 seconds. The srcmstr daemon continues to
respawn the sleepy_daemon subsystem, because the subsystem does not fail
three times within 20 seconds. Notice that lssrc reports the subsystem as active
after it has been respawned several times. Notice that the subsystem
notification method is never run. The subsystem is continually respawned until it
is stopped with a stopsrc command.
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# startsrc -s sleepy_daemon -a ″60″
0513-059 The sleepy_daemon Subsystem has been started. Subsystem PID is 6212.
#
sleepy_daemon: process 6212 about to sleep for 60 seconds.
sleepy_daemon: goodbye cruel world.

sleepy_daemon: process 6216 about to sleep for 60 seconds.
sleepy_daemon: goodbye cruel world.

sleepy_daemon: process 6220 about to sleep for 60 seconds.
sleepy_daemon: goodbye cruel world.

sleepy_daemon: process 6224 about to sleep for 60 seconds.
sleepy_daemon: goodbye cruel world.

sleepy_daemon: process 6228 about to sleep for 60 seconds.
sleepy_daemon: goodbye cruel world.

sleepy_daemon: process 6232 about to sleep for 60 seconds.

# lssrc -s sleepy_daemon
Subsystem Group PID Status
 sleepy_daemon 6232 active

# stopsrc -s sleepy_daemon
0513-044 The stop of the sleepy_daemon Subsystem was completed successfully.

# lssrc -s sleepy_daemon
Subsystem Group PID Status
 sleepy_daemon inoperative

Figure 48. Running sleepy_daemon with a Longer Delay

5.5 Subsystem Groups
Subsystem groups have been mentioned several times in this chapter. When a
subsystem is defined, it can be defined to belong to a group. The group to which
a subsystem is to belong can be specified with the -G flag of the mkssys
command. When other SRC commands are executed, the -g flag can be used to
target all the subsystems in a specified group. All the subsystems in a group
can be started, stopped, listed, refreshed, or traced. Finally, when a subsystem
fails, if an SRC notification method for the subsystem is not defined, but an SRC
notification method is defined for the group to which the subsystem belongs, the
group notification method will be executed.

When an SRC subsystem is defined, thought should be given as to how the
subsystem might conveniently be defined to be a member of a group. Does the
subsystem have relationships to other subsystems that suggest the subsystems
should be members of the same group? Would it be convenient for a system
administrator to target SRC commands to a certain collection of subsystems all
at once? Would defining one SRC notification method for a collection of
subsystems make sense? The answers to these questions might suggest how
subsystems are best formed into groups.
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When subsystems are placed into a group, if there are any limitations as to how
the subsystems can behave well as a group, they should be documented. For
example, the AIX system defines the subsystems inetd, gated, named, routed,
rwhod, iptrace, timed, and snmpd to all be members of a group named tcpip. It
seems reasonable for these subsystems to be grouped together, but there is a
problem. Both the gated and routed subsystems handle network routing. A
system should not have both of these subsystems running at the same time. If
both subsystems are running at the same time, the results are unpredictable.
Therefore, the AIX documentation warns that the command startsrc -g tcpip
should never be run.

When a subsystem is defined on the control workstation of an RS/6000 SP,
system partitioning should be considered. If one instance of a daemon should
run on a control workstation for each system partition on an RS/6000 SP, an SRC
group should be defined for the daemon. Each subsystem in the group should
execute the daemon for a particular RS/6000 SP partition. The -g flag can be
used on the SRC commands to manage all the subsystems running the daemon.

5.6 Programming for the SRC in a Daemon
This section describes programming techniques that may be used in a daemon
to support SRC control of the daemon. The techniques described here will be of
interest to the daemon writer who has decided not to use the daemon support
routines described in Chapter 10, “Daemon Support Routines” on page 245.

The daemon support routines use many of the methods described in this section.
If you decide to use the daemon support routines when you write a daemon, you
will not need to include the code discussed in this section in the daemon.

The topics discussed in this section are covered in Chapter 26 “System
Resource Controller” of AIX Version 4.1: General Programming Concepts: Writing
and Debugging Programs, SC23-2533. This section expands on the information
given in AIX Version 4.1: General Programming Concepts: Writing and Debugging
Programs, through programming examples.

The following sections are applicable to a subsystem defined to receive SRC
requests through signals:

• 5.6.1, “Determining If the Daemon Was Started by the SRC” on page 86

• 5.6.2, “Installing Signal Handlers” on page 90

• 5.6.11, “Compiling and Linking an SRC Daemon” on page 126

• 5.6.12, “Multi-Threaded Daemons and the SRC” on page 126

The following sections are applicable to a subsystem defined to receive SRC
requests through a message queue:

• 5.6.1, “Determining If the Daemon Was Started by the SRC” on page 86

• 5.6.2, “Installing Signal Handlers” on page 90

• 5.6.6, “Accessing the SRC Request Message Queue” on page 115

• 5.6.7, “Determining If an SRC Message Queue Request Is Pending” on
page 115

• 5.6.8, “Processing an SRC Message Queue Request” on page 115

• 5.6.9, “Problems with SRC Message Queues” on page 121
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• 5.6.10, “Processing Subsystem-Defined Requests” on page 125

• 5.6.11, “Compiling and Linking an SRC Daemon” on page 126

• 5.6.12, “Multi-Threaded Daemons and the SRC” on page 126

The following sections are applicable to a subsystem defined to receive SRC
requests through a socket:

• 5.6.1, “Determining If the Daemon Was Started by the SRC” on page 86

• 5.6.2, “Installing Signal Handlers” on page 90

• 5.6.3, “Accessing the SRC Request Socket” on page 92

• 5.6.4, “Determining If an SRC Socket Request Is Pending” on page 92

• 5.6.5, “Processing an SRC Socket Request” on page 92

• 5.6.10, “Processing Subsystem-Defined Requests” on page 125

• 5.6.11, “Compiling and Linking an SRC Daemon” on page 126

• 5.6.12, “Multi-Threaded Daemons and the SRC” on page 126
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5.6.1 Determining If the Daemon Was Started by the SRC
Section 3.1, “Determine How the Daemon Was Started” on page 19 discusses
how the daemon support routines determine whether the daemon was started by
the SRC. The AIX getprocs routine is used to obtain information from the
process table about the parent process of the daemon process. This information
is used to determine if SRC started the daemon or not. The major advantage of
this technique is that it makes no assumptions about the method used by the
SRC to send requests to the daemon. This is important for a generic set of
routines like the daemon support routines.

When a daemon wants to determine if it has been started by the SRC, it is not
uncommon for it to make assumptions about how it is defined to the SRC.
Several examples show strategies for coding based on definition assumptions.

If a daemon is defined to receive SRC requests through signals, a common
strategy is to define the SRC subsystem such that file descriptor 0 is associated
with /dev/null. The daemon then determines if file descriptor 0 is associated
with a character special file that is not a terminal. If it is, the daemon assumes it
has been started by the SRC. If file descriptor 0 is not associated with a
character special file, or is associated with a character special file that is a
terminal, the daemon assumes it has been started by a shell, and it should
migrate itself to another process. Figure 49 on page 87 shows this strategy24.

24 This example illustrates how a process can determine if it was started by the SRC. The example is not complete, in that it
does not handle all the issues related to daemon initialization. Refer to Chapter 3, “Daemon Initialization” on page 19 for a
complete discussion about daemon initialization.
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#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mode.h>

void create_child(void)
{

pid_t pid;

if ((pid = fork()) == (pid_t)-1) {
exit(1);

} else if (pid != 0) {
exit(0);

}

return;
}

void start_daemon(void)
{

struct sigaction sa;
struct stat st;

sa.sa_handler = SIG_IGN;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGHUP, &sa, NULL) == -1) {

exit(1);
}

if (fstat(0, &st) < 0) {
create_child();

} else {
if ((st.st_mode & S_IFMT) == S_IFCHR) {

if (isatty(0)) {
create_child();

}
} else {

create_child();
}

}

(void) setsid();

return;
}

Figure 49. Testing File Descriptor 0 for a Non-terminal Character Special File

When the init process starts a daemon directly, file descriptor 0 is often
associated with /dev/null. That is not really a problem, because actions taken
by a daemon under SRC control using signal communication are appropriate
when the daemon is directly started by init.
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If a daemon is defined to receive SRC requests through a socket, a common
strategy is to use getsockname to determine if a socket is associated with file
descriptor 0. If a socket is associated with file descriptor 0, the daemon
assumes it has been started by the SRC. If file descriptor 0 is not associated
with a socket, the daemon assumes it has been started by a shell, and it should
migrate itself to another process. Figure 50 on page 89 shows this strategy25.

25 This example illustrates how a process can determine if it was started by the SRC. The example is not complete, in that it
does not handle all the issues related to daemon initialization. Refer to Chapter 3, “Daemon Initialization” on page 19 for a
complete discussion about daemon initialization.
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#include <unistd.h>
#include <signal.h>
#include <sys/socket.h>
#include <sys/types.h>

#define SRC_FD 13

void create_child(void)
{

pid_t pid;

if ((pid = fork()) == (pid_t)-1) {
exit(1);

} else if (pid != 0) {
exit(0);

}

return;
}

int start_daemon(void)
{

int rval, addrsz;
struct sockaddr srcaddr;
struct sigaction sa;

sa.sa_handler = SIG_IGN;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;

if (sigaction(SIGHUP, &sa, NULL) == -1) {
exit(1);

}

addrsz = sizeof(srcaddr);
if (getsockname(0, &srcaddr, &addrsz) != -1) {

rval = dup2(0, SRC_FD);
} else {

create_child();
rval = -1;

}

(void) setsid();

return rval;
}

Figure 50. Testing File Descriptor 0 for a Socket

The strategy shown in Figure 50 will not allow the daemon to behave correctly if
it is ever started directly by init. If started by init, file descriptor 0 will not be
associated with a socket, the daemon will migrate itself to another process, and
init will think the daemon has terminated when the parent process exits.

If a daemon using the strategy shown in Figure 50 is started by inetd, the
daemon will probably not function correctly. The getsockname call will succeed,
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and the daemon will assume it has been started by SRC, not inetd. The actions
the daemon takes under these false assumptions are not likely to be correct.

If a daemon is defined to receive SRC requests through a message queue, it
might be tempting to judge whether the daemon was actually started by the SRC
based on the results of calling msgget to access the daemon′s SRC request
message queue. If the message queue could be accessed, the daemon must
have been started by the SRC; otherwise, it was not started by the SRC. This
strategy would be even less reliable than those discussed for signal and socket
communications above. When a subsystem defined to used message queue
communication terminates, the SRC does not clean up the daemon′s message
queue until the subsystem is started again with the SRC. If the daemon was
started without the SRC, the daemon′s message queue might still exist.

5.6.2 Installing Signal Handlers
If a daemon is defined to receive SRC requests through signals, it should install
signal handlers for the SRC stop requests. The example in Figure 51 on
page 91 assumes the SRC subsystem definition specifies SIGUSR1 for the stop
normal signal and SIGUSR2 for the stop forced signal. After the signal handlers
are installed, normal_stop will handle subsystem stop normal requests, and
quick_stop will handle subsystem stop forced and subsystem stop cancel
requests. The quick_stop routine is written to terminate the daemon
immediately. The normal_stop routine just sets a global variable to indicate that
the daemon has received the subsystem stop normal request. Some other
routine in the daemon will presumably periodically check the value of the global
variable to see if the daemon has received a subsystem stop normal request.
Both approaches are valid for signal handlers supporting the SRC stop requests.

90 Writing Reliable AIX Daemons 



#include <signal.h>

struct sigaction sa;
volatile sig_atomic_t stop_requested = 0;

void normal_stop(int signo)
{

stop_requested = 1;
return;

}

void quick_stop(int signo)
{

/* Cleanup the daemon quickly ... */
_exit(0);

}
.
.
.
(void) sigemptyset(&sa.sa_mask);
(void) sigaddset(&sa.sa_mask, SIGUSR1);
(void) sigaddset(&sa.sa_mask, SIGUSR2);
sa.sa_flags = SA_RESTART;

sa.sa_handler = normal_stop;
if (sigaction(SIGUSR1, &sa, NULL) == -1) {

/* Log an error message, including errno. */
exit(1);

}

sa.sa_handler = quick_stop;
if (sigaction(SIGUSR2, &sa, NULL) == -1) {

/* Log an error message, including errno. */
exit(1);

}

sa.sa_handler = quick_stop;
if (sigaction(SIGTERM, &sa, NULL) == -1) {

/* Log an error message, including errno. */
exit(1);

}

/* Continue, as the daemon ... Look at stop_requested periodically */
.
.
.

Figure 51. Installing Signal Handlers to Handle SRC Stop Requests

A daemon defined to receive SRC requests through a message queue or socket
should install a signal handler for the SIGTERM signal. The installed signal
handler will handle the subsystem stop cancel request.

See Chapter 7, “Signal Handling” on page 141 for all sorts of warnings
pertaining to signal handling.
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5.6.3 Accessing the SRC Request Socket
A daemon defined as an SRC subsystem that receives SRC requests through a
socket can access the socket through file descriptor 0. It is common for a
daemon to verify that file descriptor 0 is associated with a socket, and to
duplicate file descriptor 0 to another file descriptor. An example is shown in
Figure 50 on page 89.

5.6.4 Determining If an SRC Socket Request Is Pending
A daemon defined as an SRC subsystem that receives SRC requests through a
socket must regularly determine if an SRC request is pending on the SRC
request socket. If SRC requests are not answered within 60 seconds, the
requesting process usually terminates with an error. If the daemon spends most
of its time waiting for requests from other sockets, consider using the select
routine to wait for SRC requests.

5.6.5 Processing an SRC Socket Request
Figure 52 on page 93 presents an example of a daemon designed to run under
SRC control with socket communication. The daemon will act as a concurrent
server that communicates with its clients through sockets. The example
illustrates how a daemon can receive SRC requests through a socket, and how it
can handle those requests.
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#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include <sys/select.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <netinet/in.h>
#include <sys/un.h>
#include <netdb.h>
#include <spc.h>

int stop_requested = 0;
int client_count = 0;
int acpt_sockd;
int SRC_sockd;

const char * const config_file = ″ /etc/des.ex.sock.conf″ ;
char config_buf[80];
int config_cnt = 0;
int tracing_on = 0;

void quick_stop(int signo);
static int prepare_socket(void);
static void do_daemon_loop(void);

int main(int argc, char **argv)
{

struct sigaction sa;

SRC_sockd = start_daemon(); /* Call start_daemon from Figure 50. * /

sa.sa_handler = quick_stop;
sigemptyset(&(sa.sa_mask));
sa.sa_flags = 0;
if (sigaction(SIGTERM, &sa, NULL) == -1) {

/* Log an error message, including errno. */
exit(1);

}

if (prepare_socket() == 0)
do_daemon_loop();

return 0;
}

Figure 52 (Part 1 of 10). Processing SRC Requests from a Socket
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static int prepare_socket(void)
{

struct sockaddr_in saddr;
struct servent *servent;
int reuse_on = 1;

if ((acpt_sockd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
/* Log message; probably include the errno value. */
return 1;

}

if (setsockopt(acpt_sockd, SOL_SOCKET, SO_REUSEADDR,
(char *) &reuse_on, sizeof reuse_on) == -1) {

/* Log message; probably include the errno value. */
return 1;

}

if ((servent = getservbyname(″des.ex.sock″,  ″tcp″)) == NULL) {
/* Log message; probably include the errno value. */
return 1;

}

memset(&saddr, 0, sizeof saddr);
saddr.sin_family = AF_INET;
saddr.sin_addr.s_addr = INADDR_ANY;
saddr.sin_port = servent->s_port;

if (bind(acpt_sockd, (struct sockaddr *) &saddr, sizeof saddr) == -1) {
/* Log message; probably include the errno value. */
return 1;

}

if (listen(acpt_sockd, SOMAXCONN) == -1) {
/* Log message; probably include the errno value. */
return 1;

}

return 0;
}

Figure 52 (Part 2 of 10). Processing SRC Requests from a Socket
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#define MAX(x, y) ( ((x) > (y)) ? (x) : (y) )

static void create_daemon_child(void);
static void handle_SRC_req(void);
static int refresh_config(void);

static void do_daemon_loop(void)
{

int numfds;
fd_set read_fds;

(void) refresh_config();

numfds = MAX(acpt_sockd, SRC_sockd) + 1;

while (!stop_requested) {

FD_ZERO(&read_fds);
FD_SET(acpt_sockd, &read_fds);
if (SRC_sockd >= 0) {

FD_SET(SRC_sockd, &read_fds);
}

if (select(numfds, &read_fds, NULL, NULL, NULL) == -1) {
if (errno == EINTR) {

continue;
}
/* Log message */
break;

}

if (FD_ISSET(acpt_sockd, &read_fds)) {
create_daemon_child();
client_count++;

}

if ((SRC_sockd >= 0) && (FD_ISSET(SRC_sockd, &read_fds))) {
handle_SRC_req();

}

}

return;
}

Figure 52 (Part 3 of 10). Processing SRC Requests from a Socket
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static int refresh_config(void)
{

int config_fd;
int read_cnt;

config_cnt = 0;

if ((config_fd = open(config_file, O_RDONLY)) == -1) {
/* Log message; probably include the errno value. */
return 1;

}

if ((read_cnt = read(config_fd, config_buf, sizeof config_buf)) == -1) {
/* Log message; probably include the errno value. */
(void) close(config_fd);
return 1;

}

(void) close(config_fd);

config_cnt = read_cnt;

return 0;
}

Figure 52 (Part 4 of 10). Processing SRC Requests from a Socket
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void do_daemon_work(int serv_sockd);

static void create_daemon_child(void)
{

int serv_sockd;
struct sockaddr_in sock_addr;
int sock_addr_len;
pid_t childpid;

do {
sock_addr_len = sizeof sock_addr;
serv_sockd = accept(acpt_sockd,

(struct sockaddr *) &sock_addr, &sock_addr_len);

} while ((serv_sockd == -1) && (errno == EINTR));

if ((childpid = fork()) == -1) {
/* Log message; probably include the errno value. */
close(serv_sockd);
return;

}

if (childpid != 0) { /* This is the parent process. */
close(serv_sockd);
return;

}

/* This is the child process. */

close(acpt_sockd);

do_daemon_work(serv_sockd);

close(serv_sockd);
exit(0);

return; /* Should not reach. */
}

void do_daemon_work(int serv_sockd)
{

/* Do whatever the daemon is supposed to do, right here. */

return;
}

Figure 52 (Part 5 of 10). Processing SRC Requests from a Socket
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static void SRC_stop(struct srchdr *srchdr, struct subreq *subreq);
static void SRC_trace(struct srchdr *srchdr, struct subreq *subreq);
static void SRC_status(struct srchdr *srchdr, struct subreq *subreq);
static void SRC_refresh(struct srchdr *srchdr, struct subreq *subreq);

static void handle_SRC_req(void)
{

struct srcreq srcreq; struct srcrep srcrep;
struct srchdr *srchdr; struct subreq *subreq;
int reqlen;
struct sockaddr_un sockaddr;
int sockaddr_len;

sockaddr_len = sizeof sockaddr;
reqlen = recvfrom(SRC_sockd, &srcreq, sizeof srcreq , 0,

(struct sockaddr *) &sockaddr, &sockaddr_len);

if (reqlen != sizeof srcreq)
return;

srchdr = srcrrqs(&srcreq);
subreq = &srcreq.subreq;

if (subreq->action == STOP) {
SRC_stop(srchdr, subreq);

} else if (subreq->action == TRACE) {
SRC_trace(srchdr, subreq);

} else if (subreq->action == STATUS) {
SRC_status(srchdr, subreq);

} else if (subreq->action == REFRESH) {
SRC_refresh(srchdr, subreq);

} else if (subreq->action == START) {
memset(&srcrep.svrreply, 0, sizeof srcrep.svrreply);
srcrep.svrreply.rtncode = SRC_NOSUPPORT;
srcrep.svrreply.objtype = subreq->object;
strcpy(srcrep.svrreply.objname, subreq->objname);
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);

} else {
memset(&srcrep.svrreply, 0, sizeof srcrep.svrreply);
srcrep.svrreply.rtncode = SRC_SUBICMD;
srcrep.svrreply.objtype = subreq->object;
strcpy(srcrep.svrreply.objname, subreq->objname);
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);

}

return;
}

Figure 52 (Part 6 of 10). Processing SRC Requests from a Socket
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static void SRC_stop(struct srchdr *srchdr, struct subreq *subreq)
{

struct srcrep srcrep;
struct sigaction sa;

memset(&srcrep.svrreply, 0, sizeof srcrep.svrreply);
srcrep.svrreply.objtype = subreq->object;
strcpy(srcrep.svrreply.objname, subreq->objname);

if (subreq->object != SUBSYSTEM) {
srcrep.svrreply.rtncode = SRC_NOSUPPORT;
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);
return;

}

srcrep.svrreply.rtncode = SRC_OK;
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);

if (subreq->parm1 == NORMAL) {
stop_requested = 1;

} else { /* Assume FORCED */
sa.sa_handler = SIG_IGN;
sigemptyset(&(sa.sa_mask));
sa.sa_flags = 0;
(void) sigaction(SIGTERM, &sa, NULL);
(void) kill(0, SIGTERM);
exit(0);

}

return;
}

static void quick_stop(int signo)
{

if (getsid((pid_t)0) == getpid()) {
(void) kill(0, SIGTERM);

}

_exit(0);
}

Figure 52 (Part 7 of 10). Processing SRC Requests from a Socket
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static void SRC_trace(struct srchdr *srchdr, struct subreq *subreq)
{

struct srcrep srcrep;
int debug_on_off;
const char * const error_msg =

″Subsystem des.ex.sock: setsockopt() failed.\n″ ;

memset(&srcrep.svrreply, 0, sizeof srcrep.svrreply);
srcrep.svrreply.objtype = subreq->object;
strcpy(srcrep.svrreply.objname, subreq->objname);

if (subreq->object != SUBSYSTEM) {
srcrep.svrreply.rtncode = SRC_NOSUPPORT;
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);
return;

}

debug_on_off = (subreq->parm2 == TRACEON);

if (setsockopt(acpt_sockd, SOL_SOCKET, SO_DEBUG,
(char *) &debug_on_off, sizeof debug_on_off) == -1) {

/* Log message; probably include the errno value. */
srcrep.svrreply.rtncode = SRC_SUBMSG;
strcpy(srcrep.svrreply.rtnmsg, error_msg);
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);
return;

}

tracing_on = (subreq->parm2 == TRACEON);

srcrep.svrreply.rtncode = SRC_OK;
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);

return;
}

Figure 52 (Part 8 of 10). Processing SRC Requests from a Socket
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static void SRC_refresh(struct srchdr *srchdr, struct subreq *subreq)
{

struct srcrep srcrep;
const char * const er_msg = ″Subsystem des.ex.sock failed to read %s.\n″ ;
const char * const ok_msg = ″Subsystem des.ex.sock sucessfully read %s.″ ;

memset(&srcrep.svrreply, 0, sizeof srcrep.svrreply);
srcrep.svrreply.objtype = subreq->object;
strcpy(srcrep.svrreply.objname, subreq->objname);

if (subreq->object != SUBSYSTEM) {
srcrep.svrreply.rtncode = SRC_NOSUPPORT;
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);
return;

}

if (refresh_config() != 0) {
srcrep.svrreply.rtncode = SRC_SUBMSG;
sprintf(srcrep.svrreply.rtnmsg, er_msg, config_file);
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);
return;

}

sprintf(srcrep.svrreply.rtnmsg, ok_msg, config_file);
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, CONTINUED);

srcrep.svrreply.rtncode = SRC_OK;
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);

return;
}

Figure 52 (Part 9 of 10). Processing SRC Requests from a Socket

Chapter 5. Managing a Daemon with the SRC 101



�10�
static void SRC_status(struct srchdr *srchdr, struct subreq *subreq)
{

struct srcrep srcrep;
struct statrep statrep;
struct statcode *sp;

if (subreq->object != SUBSYSTEM) {
memset(&srcrep.svrreply, 0, sizeof srcrep.svrreply);
srcrep.svrreply.rtncode = SRC_NOSUPPORT;
srcrep.svrreply.objtype = subreq->object;
strcpy(srcrep.svrreply.objname, subreq->objname);
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);
return;

}

sp = &statrep.statcode[0];

sp->objtype = 0;
sp->status = 0;
strcpy(sp->objname, ″″ ) ;
sprintf(sp->objtext, ″I′ ve seen %d client connections.″ ,  client_count);
(void) srcsrpy(srchdr, &statrep, sizeof statrep, STATCONTINUED);

sp->objtype = 0;
sp->status = 0;
strcpy(sp->objname, ″″ ) ;
strcpy(sp->objtext, tracing_on ? ″Tracing is on.″ : ″Tracing is off.″ ) ;
(void) srcsrpy(srchdr, &statrep, sizeof statrep, STATCONTINUED);

(void) srcsrpy(srchdr, &statrep, sizeof(struct srchdr), END);

return;
}

Figure 52 (Part 10 of 10). Processing SRC Requests from a Socket

Figure 52, part �1� shows the main routine. The main routine uses the code in
Figure 50 to determine if the daemon has been started by the SRC, or not. It
then installs a signal handler for the SIGTERM signal. This signal handler will be
invoked whenever the subsystem is targeted with the SRC subsystem stop
cancel request. Once the signal handler is installed, the main routine calls
prepare_socket and do_daemon_loop.

In Figure 52, part �2�, the prepare_socket routine initializes the socket through
which the daemon will establish connections with clients. This socket should not
be confused with the socket through which the SRC will make requests of the
daemon. The socket through which SRC will make requests of the daemon is a
UNIX domain datagram socket that is initialized by srcmstr and associated with
file descriptor 0 of the daemon process just before the daemon program is
executed. This socket was duplicated to another file descriptor by main. The
socket through which the daemon will accept connection requests from clients is
an Internet domain stream socket that is initialized by prepare_socket.
Throughout Figure 52, the file descriptor of the SRC request socket is referenced
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by the variable SRC_sockd, and the file descriptor of the socket though which
client connection requests are accepted is referenced by the variable acpt_sockd.

The prepare_socket routine sets up the Internet domain stream socket in a
standard fashion. It calls socket, bind, and listen. Notice that before calling
bind, it calls setsockopt to set the SO_REUSEADDR socket option. This allows the
daemon to be successfully restarted after being stopped by the SRC subsystem
stop normal, stop forced, and stop cancel requests. If the SO_REUSEADDR socket
option is not set, attempts to start the daemon after it has been stopped might
result in the bind routine returning the “address already in use” error.

Figure 52, part �3� shows the do_daemon_loop routine. This routine waits for a
request to arrive, handles the request, and then waits for another request to
arrive. The routine uses select with no time out value. The select call waits for
client connection requests through the socket whose file descriptor is in
acpt_sockd, and also for SRC requests through the socket whose file descriptor is
SRC_sockd. If the select routine indicates that a connection can be established
with a client through the daemon connection socket, create_daemon_child is
called to establish the connection and to create a child process to serve the
client. If the select routine indicates that data can be read from the SRC request
socket, handle_SRC_req is called. The handle_SRC_req routine will process the SRC
request and return.

Figure 52, part �5� shows the create_daemon_child routine. This routine calls
accept to establish a connection with a client, and creates a child process that
will serve the client. The child process calls the do_daemon_work routine, which
presumably serves the client as intended by the daemon. The do_daemon_work
code is not shown, as its content depends on the service being provided by the
daemon.

Figure 52, part �6� shows the handle_SRC_req routine, whose function is to
process the next request on the SRC request socket. Before considering how
SRC requests are handled in the code, it may be helpful to refer to the diagram
in Figure 53. The diagram shows the flow of data involved in making SRC
subsystem status requests. The flow is similar for the other SRC requests.

When the system administrator executes the lssrc command, the process
running lssrc sends a request, through a socket, to the SRC daemon srcmstr.
Some SRC requests can be handled directly by srcmstr, while other requests
must be forwarded on to the subsystem targeted by the request. The srcmstr
daemon can handle the subsystem short status request. So, if the administrator
does not specify the -l flag when executing lssrc, srcmstr sends the reply back
to the process running lssrc. The reply is sent through a socket. The
subsystem is not involved in handling the request at all. The srcmstr daemon
cannot handle the subsystem long status request directly, because the reply is
up to the individual subsystem. In this case, the srcmstr daemon forwards the
request to the subsystem targeted by the request. The srcmstr daemon is not
interested in the reply generated by the subsystem. So, the request sent to the
subsystem includes an address indicating where the reply should be sent. The
address specified corresponds to a socket on which lssrc is waiting for the
reply. The subsystem determines its status, and sends the reply data to the
process running the lssrc command. All data is sent through sockets, with the
possible exception of the data sent from the srcmstr daemon to the subsystem.
The mechanism used depends on the definition of the subsystem, whether
socket or message queue communication is specified for the subsystem.
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The format of SRC requests sent to subsystems is defined by the

subsystem
┌───────────────────────┐ short status ┌─────────────────┐
│ │ request │ │
│ ├──────────────────────�│ │
│ lssrc -s des.ex.sock │ │ srcmstr │
│ │�──────────────────────┤ │
│ │ subsystem │ │
└───────────────────────┘ short status └─────────────────┘

reply

┌─────────────────┐
│ │
│ │
│ des.ex.sock │
│ │
│ │
└─────────────────┘

subsystem
┌───────────────────────┐ long status ┌─────────────────┐
│ │ request │ │
│ ├──────────────────────�│ │
│ lssrc -ls des.ex.sock │ │ srcmstr │
│ │ │ │
│ │ │ │
└───────────────────────┘ └────────┬────────┘

	 │
│ �
│ subsystem ┌─────────────────┐
│ long status │ │
│ reply │ │
└───────────────────────────────────┤ des.ex.sock │

│ │
│ │
└─────────────────┘

Figure 53. Flow of Data for Subsystem Status Requests

srcreq structure. The structure is defined in spc.h and shown in Figure 54 on
page 105. The structure is composed of two other structures, an srchdr
structure and an subreq structure26. The srchdr structure contains the address of
the process to receive the request reply. The subreq structure defines the
request being made of the subsystem, and is composed of fields named object,
action, parm1, parm2, and objname. The object field indicates whether the request
is targeted to the subsystem or to a subserver of the subsystem. If the object

26 The mtype field is only included in the srcreq structure when SRCBYQUEUE is defined. The SRCBYQUEUE constant should only be
defined when the subsystem accepts SRC requests through a message queue.
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field has the value of the constant SUBSYSTEM27, the request is targeted at the
subsystem. Any other value identifies the subserver targeted by the request.
The action field is set to a value indicating what request is being made. The
standard values are represented by the constants START, STOP, TRACE, STATUS, and
REFRESH. The parm1 and parm2 fields are request modifiers; their meanings
depend on the request being made. Finally, the objname field contains the name
of the object targeted by the request.

/* src header to be included in all packets that are sent to and
** received from any subsystem
**/
struct srchdr
{

struct sockaddr_un retaddr; /* return address for packets */
short dversion; /* SRC packet version */
short cont; /* continuation indicator */

};

/* subsystem request */
struct subreq
{

short object; /* object type one of
** 1. SUBSYSTEM
** 2. subserver code point as defined
** in subserver object class
**/

short action; /* action requested of subsystem */
short parm1; /* first modifier for subsystem action */
short parm2; /* second modifier for subsystem action */
char objname[SRCNAMESZ];

/* name of object that request applies to
** 1. subsystem name
** 2. subserver object
** 3. subserver pid
**/

};

/* Subsystem request receipt */
struct srcreq
{
#ifdef SRCBYQUEUE

long mtype; /* mtype for message queue subsystems */
#endif

struct srchdr srchdr;
struct subreq subreq;

};

Figure 54. Definition of the srcreq Structure

Referring back to Figure 52, part �6�, the first thing the handle_SRC_req routine
does is call the recvfrom routine to read the next request from the SRC request

27 Unless specified otherwise, all constants discussed in this section are defined in /usr/include/spc.h.
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socket. Standard requests from the SRC to a subsystem are the same size, the
size of a srcreq structure28. So, handle_SRC_req confirms that the size returned by
recvfrom is the size of a srcreq structure. The data in the srchdr structure is
saved by a routine provided by the SRC for that purpose, srcrrqs. The
handle_SRC_req routine looks at the action field in the subreq structure to
determine what request is being made, and takes the appropriate action. Other
routines in the daemon are called to handle the STOP, TRACE, STATUS and REFRESH
requests. If the request being made is START or some invalid request,
handle_SRC_req replies with an error code. A START request is only forwarded to a
subsystem if it is for a subserver. This subsystem does not support subservers,
so a START request is always replied to with an error code. How replies are
made to SRC requests is discussed shortly.

Figure 52, part �7� shows the SRC_stop routine, whose function is to process a
STOP request. Two arguments are passed to the routine: the pointer returned by
srcrrqs, which is srchdr, and a pointer to the subreq structure describing the
request being made of the subsystem. The SRC_stop routine examines the value
of the object field in the subreq structure. Since this daemon is not supporting
subservers, the SRC_stop routine will send a reply with an error code if the object
field in the subreq structure is not SUBSYSTEM.

The SRC_stop routine also examines the value of the parm1 field in the subreq
structure. For the STOP request, the parm1 field indicates if the stop request is a
stop normal request or a stop forced request. The parm1 field value for stop
normal is the value of the constant NORMAL, and the value for stop forced is the
value of the constant FORCED. This code is used in a daemon that terminates its
child processes and exits immediately when it receives the stop forced request.
Terminating the child processes conforms with the intended semantics of the
SRC stop forced request, since terminating the child processes will terminate the
processing for current clients. The code for this daemon sets the stop_requested
flag to 1 when it receives the stop normal request. The do_daemon_loop routine,
shown in Figure 52, part �3�, checks the stop_requested flag periodically. Child
processes are not terminated, since the semantics of the SRC stop normal
request is to allow the processing for current clients to complete.

Figure 52, part �7� also shows the quick_stop routine, whose function is to
process an SRC stop cancel request. Recall that the main routine installed
quick_stop as the signal handler for the SIGTERM signal. When invoked, the
quick_stop routine terminates the daemon′s child processes and exits
immediately. These actions comply with the intended semantics of the SRC stop
cancel request.

The child processes are terminated by sending the SIGTERM signal to all
processes in the daemon′s process group. In the SRC_stop routine, the SIGTERM
signal is first ignored so the daemon process does not run the quick_stop routine
unnecessarily. Changing the disposition of the SIGTERM signal is not necessary in
the quick_stop routine, since the SIGTERM signal is blocked while quick_stop is
executed. Since the quick_stop routine will be used as the SIGTERM signal
handler for both the daemon process and the child processes, the routine must
base its actions on whether or not it is being run by the daemon. The routine

28 Subsystem-defined requests can be larger. See 5.6.10, “Processing Subsystem-Defined Requests” on page 125 for
information about subsystem-defined requests.
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can make this determination by determining if the session leader of the process
is the process itself.

Most replies to subsystem requests are made using the srcrep structure. This
structure is defined in spc.h and shown in Figure 55 on page 108. The structure
is composed of two other structures, an srchdr structure and an svrreply
structure. The srchdr structure can be ignored for now. The svrreply structure
defines the reply being made by the subsystem. The rtncode field should be set
to an SRC return code29. The objtype field should be set to a value indicating the
type of object to which the request was targeted. The objname field should be set
to the name of the subsystem or subserver to which the request was targeted.
The rtnmsg field can be used to return an error message when the rtncode field
is set to SRC_SUBMSG.

29 The SRC return codes are described in /usr/include/srcerrno.h. A subsystem does not need to include this header explicitly,
since it is included by /usr/include/spc.h.
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/* src header to be included in all packets that are sent to and
** received from any subsystem
**/
struct srchdr
{

struct sockaddr_un retaddr; /* return address for packets */
short dversion; /* SRC packet version */
short cont; /* continuation indicator */

};

/* subsystem reply */
struct svrreply
{

short rtncode; /* subsystems response to the request
** negative on subsystem error
** or subsystem unique message returned
**/

short objtype; /* status object type one of
** 1. SUBSYSTEM
** 2. subserver code point
** 3. error code
**/

char objtext[65]; /* text discription to be included in
** response of subsystem action
**/

char objname[SRCNAMESZ];
/* name of object (subsystem/subsever) that
** this response belongs to
*/

char rtnmsg[256]; /* subsystem unique message */
};

/* Subsystem reply */
struct srcrep
{

struct srchdr srchdr;
struct svrreply svrreply;

};

Figure 55. Definition of the srcrep Structure

When an svrreply structure is filled in, the objtype field is usually set to the
value of the object field of the subreq structure that made the request. Similarly,
the objname field of the svrreply structure is usually set to the value of the
objname field of the subreq structure that made the request.

A reply is made to an SRC request by calling the srcsrpy routine. The
arguments usually specified with the call are the value returned by srcrrqs, the
address of a filled in srcrep structure, the size of the reply, and a continuation
indicator. The continuation indicator allows multiple replies to be sent for an
SRC request. This is described shortly. A value of END for the continuation
indicator means this is the last reply for the SRC request.

Referring to Figure 52, part �7�, the SRC_stop routine either replies with the
SRC_NOSUPPORT return code or the SRC_OK return code. The SRC_NOSUPPORT return
code is used if the stop request was not for the subsystem; otherwise, the SRC_OK
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return code is used. Take note that the srcsrpy routine should be called to send
the reply before the subsystem terminates itself.

Figure 52, part �8� shows the SRC_trace routine, which handles TRACE requests. If
the object field of the subreq structure indicates the request is for a subserver,
the SRC_NOSUPPORT error code is returned. If the TRACE request is targeted to the
subsystem, the SRC_trace routine determines if tracing is to be turned on or off.
For the TRACE requests, the parm2 field of the subreq structure indicates if the
request is to turn tracing on or off. The constant TRACEON means tracing is to be
turned on; the constant TRACEOFF means tracing is to be turned off. This daemon
has decided that when tracing is on, the SO_DEBUG socket option will be turned on
for the socket accepting client connections, and when tracing is off, the SO_DEBUG
socket option will be turned off for the same socket. If the setsockopt routine
fails, the SRC_trace routine sends the error message pointed to by error_msg to
the process making the trace request. Notice that the text of the message is
placed in the rtnmsg field of the svrreply structure, and the rtncode field of the
same structure is set to SRC_SUBMSG. The message will probably be displayed on
the standard output of the process which made the trace request30. If the
setsockopt routine succeeds, the SRC_trace routine sets the rtncode field of the
svrreply field to SRC_OK, indicating success.

When the parm2 field of the subreq structure for a TRACE request is TRACEON, the
parm1 field of the structure indicates if short or long tracing is being requested.
The constant SHORTTRACE indicates short tracing is being requested; the constant
LONGTRACE indicates long tracing is being requested. The subsystem may or may
not distinguish between short and long tracing. The daemon in Figure 52 on
page 93 makes no distinction between short and long tracing.

Figure 52, part �9� shows the SRC_refresh routine. The routine handles the
REFRESH request. If the object field of the subreq structure indicates the request is
for a subserver, the SRC_NOSUPPORT error code is returned. If the REFRESH request
is targeted to the subsystem, the SRC_refresh routine calls the refresh_config
routine of Figure 52, part �4� to actually refresh the daemon′s configuration. If
the refresh_config routine reports an error, the SRC_refresh routine sends the
error message pointed to by er_msg to the process making the refresh request. If
the refresh_config routine returns an indication of success, the SRC_refresh
routine sends two replies to the process making the refresh request. Notice that
the srcsrpy routine is called twice to send the two replies. On the first call to
srcsrpy, the continuation indicator is set to CONTINUED; on the second call to
srcsrpy, the continuation indicator is set to END. When a reply is sent with the
CONTINUED continuation indicator, the receiving process expects a message in the
rtnmsg field of the svrreply structure31. The receiving process displays the text of
the message on its standard output, and waits for the next reply. The value of
the rtncode field of the svrreply structure has no meaning when the CONTINUED
continuation indicator is used. The SRC_OK return code is sent with the reply that
is sent with the END continuation indicator.

30 A defect in the source code from which the traceson, tracesoff, and refresh commands are built does not allow the program to
receive the last 114 bytes of the rtnmsg field. Until this is fixed, subsystems should limit themselves to the first 142 bytes of
the rtnmsg field. One of those bytes will be needed for a new-line character and one byte will be needed for the null
terminator.

31 Notice that when the CONTINUED continuation indicator is specified, a message placed in rtnmsg does not end with a new-line
character. A new-line character is added by the receiving process to this type of message. Contrast this to the case when
the END continuation indicator is specified. Then, a message placed in rtnmsg does end with a new-line character. In this case,
the receiving process does not add a new-line character.
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The remaining routine to discuss in Figure 52 on page 93 is SRC_status, which
responds to STATUS requests. The status of a subsystem is not sent to the
requesting process in a srcrep structure. Instead, it is sent in a statrep
structure. The statrep structure is defined in spc.h, and shown in Figure 56 on
page 110. The statrep structure is composed of a srchdr structure and an array
of statcode structures. The definition of the statrep structure indicates only one
entry in the array of statcode structures. However, more than one statcode
structure may be associated with a reply. Each statcode structure can be
thought to represent one line of status output. For each statcode structure
returned in response to a status request, the lssrc command executes the
printf routine to display output with the following format: the null-terminated
string in the objname field, followed by a blank, followed by the null-terminated
string in objtext, followed by a blank, followed by a string corresponding to the
value in the status field. New-line characters can be placed in the objname and
objtext fields to cause more than one line of status output to be generated by
one statcode structure.

/* src header to be included in all packets that are sent to and
** received from any subsystem
**/
struct srchdr
{

struct sockaddr_un retaddr; /* return address for packets */
short dversion; /* SRC packet version */
short cont; /* continuation indicator */

};

/*
** Subsystem Status Reply
**/
struct statcode
{

short objtype; /* status object type one of
** 1. SUBSYSTEM
** 2. subserver code point
** 3. error code
**/

short status; /* status code */
char objtext[65]; /* text discription to be included in

** printing status for this object
**/

char objname[SRCNAMESZ];
/* name of object (subsystem/subsever) that
** this status belongs to
*/

};

/* Subsystem status reply */
struct statrep
{

struct srchdr srchdr;
struct statcode statcode[1];

};

Figure 56. Definition of the statrep Structure
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Figure 52, part �10� shows the SRC_status routine. The routine handles the
STATUS request. If the object field of the subreq structure indicates the request is
for a subserver, the SRC_NOSUPPORT error code is returned. If the STATUS request
is targeted to the subsystem, the SRC_status routine will reply with the long
status of the subsystem. The parm1 field of the subreq structure indicates if short
or long status is requested. However, the SRC_status routine does not examine
the parm1 field, because a subsystem will never receive a request for subsystem
short status. If the subsystem supported subservers, it might need to examine
the parm1 field to distinguish between subserver short and long status.

The SRC_status routine returns two lines of status with three calls to srcsrpy.

Before the first call to srcsrpy, the objtext field of a statcode structure is filled in
with a message indicating how many client connection requests the daemon has
seen. The continuation indicator is specified as STATCONTINUED on the first call to
srcsrpy. This is an indication that this reply contains status, and further replies
should be expected. Notice that the address and length of the statrep structure
are passed as parameters. Before the second call to srcsrpy, the objtext field of
a statcode structure is filled in with a message indicating whether or not the
daemon is in tracing mode. The continuation indicator is specified as
STATCONTINUED on the second call to srcsrpy. Again, this is an indication that this
reply contains status, and further replies should be expected.

Finally, a third call to srcsrpy is made. This time the continuation indicator is
specified as END. This is an indication that this is the last reply for the status
request. No meaningful data is sent with this reply, but the length of the reply
must be equal to the size of a srchdr structure.

Figure 57 on page 112 shows a modified version of the SRC_status routine. This
version of the routine sends multiple statcode structures in one call to srcsrpy.
Enough memory is allocated to hold one srchdr structure and as many statcode
structures as are needed. The statcode structures are then filled in before
calling srcsrpy. Another call to srcsrpy is still needed to indicate to the
requesting process that no more replies should be expected.
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static void SRC_status(struct srchdr *srchdr, struct subreq *subreq)
{

struct srcrep srcrep;
struct statrep *statrep;
int statrep_size;
struct statcode *sp;
const char * const er_msg = ″Insufficient memory to satisfy request.\n″ ;

if (subreq->object != SUBSYSTEM) {
memset(&srcrep.svrreply, 0, sizeof srcrep.svrreply);
srcrep.svrreply.rtncode = SRC_NOSUPPORT;
srcrep.svrreply.objtype = subreq->object;
strcpy(srcrep.svrreply.objname, subreq->objname);
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);
return;

}

statrep_size = sizeof(struct srchdr) + 2 * sizeof(struct statcode);

if ((statrep = malloc(statrep_size)) == NULL) {
memset(&srcrep.svrreply, 0, sizeof srcrep.svrreply);
srcrep.svrreply.rtncode = SRC_SUBMSG;
srcrep.svrreply.objtype = subreq->object;
strcpy(srcrep.svrreply.objname, subreq->objname);
strcpy(srcrep.svrreply.rtnmsg, er_msg);
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);
return;

}

sp = &statrep->statcode[0];
sp->objtype = 0;
sp->status = 0;
strcpy(sp->objname, ″″ ) ;
sprintf(sp->objtext, ″I′ ve seen %d client connections.″ ,  client_count);

sp++;
sp->objtype = 0;
sp->status = 0;
strcpy(sp->objname, ″″ ) ;
strcpy(sp->objtext, tracing_on ? ″Tracing is on.″ : ″Tracing is off.″ ) ;

(void) srcsrpy(srchdr, statrep, statrep_size, STATCONTINUED);
(void) srcsrpy(srchdr, statrep, sizeof(struct srchdr), END);
free(statrep);

return;
}

Figure 57. Sending Mult iple statcode Structures (Assuming No Padding)

The maximum number of statcode structures that can be sent in one call to
srcsrpy is limited by the maximum packet size supported by the SRC. This
maximum packet size is defined by the macro SRCPKTMAX. The number of
statcode structures that can be placed in an SRC packet of the maximum size
can be calculated as shown in Figure 58 on page 113. In AIX 4.1.2, SRCPKTMAX is
defined as 8192 bytes, the size of the srchdr structure is 114 bytes, and the size
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of the statcode structure is 100 bytes. Therefore, the number of statcode
structures that can be placed in the largest SRC packet is 80.

(SRCPKTMAX - sizeof(struct srchdr)) / sizeof(struct statcode)

Figure 58. Maximum statcode Structures in an SRC Packet (Assuming No Padding)

It should be noted that the code in Figure 57 on page 112 and Figure 58
assumes there is no padding between the srchdr structure and the statcode
array in the statrep structure. This is true in AIX 4.1.2. Figure 59 on page 114
shows a version of SRC_status that does not make this assumption. Figure 60 on
page 114 shows how the number of statcode structures that fit in an SRC packet
of the maximum size can be calculated without making the padding assumption.
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#define STATCODE_PTR(ptr,x) ((((struct statrep *)(ptr))->statcode) + (x))
#define STATCODE_0_OFF (((char *) STATCODE_PTR(NULL, 0)) - ((char *) NULL))
#define STATUS_SIZE(items) ((items) * sizeof(struct statcode))
#define STATREP_SIZE(items) (STATCODE_0_OFF + STATUS_SIZE(items))

static void SRC_status(struct srchdr *srchdr, struct subreq *subreq)
{

struct srcrep srcrep;
struct statrep *statrep;
int statrep_size;
struct statcode *sp;
const char * const er_msg = ″Insufficient memory to satisfy request.\n″ ;

if (subreq->object != SUBSYSTEM) {
/* Fill in srcrep to indicate error; see Figure 57 for the code. */
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);
return;

}

statrep_size = STATREP_SIZE(2);

if ((statrep = malloc(statrep_size)) == NULL) {
/* Fill in srcrep to indicate error; see Figure 57 for the code. */
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);
return;

}

sp = &statrep->statcode[0];
sp->objtype = 0;
sp->status = 0;
strcpy(sp->objname, ″″ ) ;
sprintf(sp->objtext, ″I′ ve seen %d client connections.″ ,  client_count);

sp++;
sp->objtype = 0;
sp->status = 0;
strcpy(sp->objname, ″″ ) ;
strcpy(sp->objtext, tracing_on ? ″Tracing is on.″ : ″Tracing is off.″ ) ;

(void) srcsrpy(srchdr, statrep, statrep_size, STATCONTINUED);
(void) srcsrpy(srchdr, statrep, sizeof(struct srchdr), END);
free(statrep);

return;
}

Figure 59. Sending Mult iple statcode Structures (Making No Padding Assumptions)

((SRCPKTMAX - sizeof(struct statrep)) / sizeof(struct statcode)) + 1

Figure 60. Maximum statcode Structures in an SRC Packet (Making No Padding Assumptions)

114 Writing Reliable AIX Daemons 



5.6.6 Accessing the SRC Request Message Queue
A daemon defined as an SRC subsystem that receives SRC requests through a
message queue can access the message queue using the msgget routine. When
the msgget routine is called to access the message queue, the message key
specified in the subsystem definition must be used. An example is shown in
Figure 61 on page 116. The example is explained in the following sections.

5.6.7 Determining If an SRC Message Queue Request Is Pending
A daemon defined as an SRC subsystem that receives SRC requests through a
message queue must regularly determine if an SRC request is pending on the
SRC request message queue. If SRC requests are not answered within 60
seconds, the requesting process usually terminates with an error. If the daemon
spends most of its time waiting, using the select routine to wait for requests
seems to be the natural choice. An example is shown in Figure 61 on page 116.
The example is explained in the following sections.

5.6.8 Processing an SRC Message Queue Request
Processing SRC requests that arrive through a message queue is similar to
processing SRC requests that arrive through a socket. Therefore, this section
assumes the information in 5.6.5, “Processing an SRC Socket Request” on
page 92 has been read and understood.

The two differences between handling SRC requests from a socket and handling
them from a message queue are:

• When handling requests from a socket, socket routines like getsockname and
recvfrom are used. When handling requests from a message queue,
message queue routines like msgget and msgrcv are used.

• The definition of the srcreq structure is changed to include a message type
field when handling SRC requests from a message queue. Refer back to
Figure 54 on page 105. The mtype field of the srcreq structure is only defined
if the SRCBYQUEUE macro is defined. A subsystem receiving SRC requests
from a socket must not define that macro. A subsystem receiving SRC
requests from a message queue must define that macro before including the
spc.h header file. A subsystem receiving requests from a message queue
must take into account the extra field in the srcreq structure.

Figure 61 presents an example of a daemon designed to run under SRC control
with message queue communication. The example illustrates how a daemon
can receive SRC requests through a message queue, and how it can handle
those requests.
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#include <unistd.h>

#define SRCBYQUEUE
#include <spc.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define SUBSYS_DAE_OFFSET 200
#define MSQ_KEY 0xBADF00D
#define MSQ_TYPE 0xBEEF

int stop_requested = 0;
int msqid;

static void signal_stop(int signo);
static void do_daemon_work(void);

int main(int argc, char **argv)
{

const int msqperm = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
struct msqid_ds msqid_ds;
struct srcreq srcreq;

if ((msqid = msgget(MSQ_KEY, msqperm)) == -1) {
/* Log some error message */
return 1;

}

do_daemon_work();

return 0;
}

Figure 61 (Part 1 of 5). Processing SRC Requests from a Message Queue
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#include <unistd.h>
#include <sys/select.h>
#include <sys/types.h>
#include <time.h>

void handle_SRC_req(void);

static void do_daemon_work(void)
{

struct sellist {
int msqids[1];

};
struct sellist read_list;
struct timeval time_out;
time_t start_time, end_time, current_time;
const time_t sample_rate = 5 * 60; /* Sample every 5 minutes. */
const int nmsq = 1 << 16;
int rval;

while (!stop_requested) {

/* Do the actual work of the daemon here, perhaps. */

start_time = time(NULL);
end_time = start_time + sample_rate;

current_time = start_time;

while ((current_time < end_time) && (!stop_requested)) {

time_out.tv_sec = end_time - current_time;
time_out.tv_usec = 0;
read_list.msqids[0] = msqid;
rval = select(nmsq, &read_list, NULL, NULL, &time_out);

if ((rval == nmsq) && (read_list.msqids[0] == msqid)) {
handle_SRC_req();

}

current_time = time(NULL);
}

}

return;
}

Figure 61 (Part 2 of 5). Processing SRC Requests from a Message Queue
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static void SRC_stop(struct srchdr *srchdr, struct subreq *subreq);
static void SRC_status(struct srchdr *srchdr, struct subreq *subreq);

static void handle_SRC_req(void)
{

struct srcreq srcreq; struct srcrep srcrep;
struct srchdr *srchdr; struct subreq *subreq;
int reqlen;

reqlen = msgrcv(msqid, &srcreq, sizeof srcreq - sizeof(long),
MSQ_TYPE, IPC_NOWAIT | MSG_NOERROR);

if (reqlen != sizeof srcreq - sizeof(long))
return;

srchdr = srcrrqs((char *)&srcreq + sizeof(long));
subreq = &srcreq.subreq;

if (subreq->action == STOP) {
SRC_stop(srchdr, subreq);

} else if (subreq->action == STATUS) {
SRC_status(srchdr, subreq);

} else if ((subreq->action == TRACE) || (subreq->action == REFRESH) ||
(subreq->action == START)) {

memset(&srcrep.svrreply, 0, sizeof srcrep.svrreply);
srcrep.svrreply.rtncode = SRC_NOSUPPORT;
srcrep.svrreply.objtype = subreq->object;
strcpy(srcrep.svrreply.objname, subreq->objname);
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);

} else {
memset(&srcrep.svrreply, 0, sizeof srcrep.svrreply);
srcrep.svrreply.rtncode = SRC_SUBICMD;
srcrep.svrreply.objtype = subreq->object;
strcpy(srcrep.svrreply.objname, subreq->objname);
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);

}

return;
}

Figure 61 (Part 3 of 5). Processing SRC Requests from a Message Queue
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static void SRC_stop(struct srchdr *srchdr, struct subreq *subreq)
{

struct srcrep srcrep;

memset(&srcrep.svrreply, 0, sizeof srcrep.svrreply);
srcrep.svrreply.objtype = subreq->object;
strcpy(srcrep.svrreply.objname, subreq->objname);

if (subreq->object != SUBSYSTEM) {
srcrep.svrreply.rtncode = SRC_NOSUPPORT;
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);
return;

}

srcrep.svrreply.rtncode = SRC_OK;
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);

stop_requested = 1;

return;
}

Figure 61 (Part 4 of 5). Processing SRC Requests from a Message Queue
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#include <time.h>

static void SRC_status(struct srchdr *srchdr, struct subreq *subreq)
{

struct srcrep srcrep;
struct statrep statrep;
struct statcode *sp;
time_t current_time;

if (subreq->object != SUBSYSTEM) {
memset(&srcrep.svrreply, 0, sizeof srcrep.svrreply);
srcrep.svrreply.rtncode = SRC_NOSUPPORT;
srcrep.svrreply.objtype = subreq->object;
strcpy(srcrep.svrreply.objname, subreq->objname);
(void) srcsrpy(srchdr, &srcrep, sizeof srcrep, END);
return;

}

sp = &statrep.statcode[0];

sp->objtype = 0;
sp->status = 0;
strcpy(sp->objname, ″″ ) ;
sprintf(sp->objtext, ″\nAll is well with process %d at ″ ,  getpid());
current_time = time(NULL);
strcat(sp->objtext, ctime(&current_time));
(void) srcsrpy(srchdr, &statrep, sizeof statrep, STATCONTINUED);

(void) srcsrpy(srchdr, &statrep, sizeof(struct srchdr), END);

return;
}

Figure 61 (Part 5 of 5). Processing SRC Requests from a Message Queue

The first thing to notice about the example in Figure 61 is that the daemon
defines the SRCBYQUEUE macro before including the spc.h header file.

Figure 61, part �1� shows the main routine of the daemon. This routine calls
msgget to access the message queue through which SRC requests are expected.
The message key specified in the first parameter to msgget should be the key
that was specified when the daemon was defined as an SRC subsystem. This
program refers to the message key with the macro MSQ_KEY. The msgget routine
returns an identifier for the message queue. The returned identifier is used in
other routines to perform operations on the message queue. Once the message
queue has been accessed, the main routine calls do_daemon_work.

Figure 61, part �2� shows the do_daemon_work routine, which will presumably do
the work the daemon is designed to do. This routine is structured for a daemon
that will sample some data at some regular interval, in this case every 5
minutes. The routine uses select with a time out value. The time out value
specified is the time remaining until the expiration of the sampling interval. The
select system call will return when the time out value has expired, when the
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SRC request message queue has a message that can be read, or when it is
interrupted by a signal handler returning. The do_daemon_work routine is coded
so the data sample is taken at the proper interval. This may involve several
calls to select per interval if select returns before the time out specified has
expired. If the select routine indicates data can be read from the message
queue, the handle_SRC_req routine is called. When handle_SRC_req returns, select
is called again if there is more time to wait before the expiration of the sampling
interval, and a stop request has not been received.

Figure 61, part �3� shows the handle_SRC_req routine, whose function is to
process the next request on the SRC request message queue. The first thing the
handle_SRC_req routine does is call the msgrcv routine to read the next request
from the SRC request message queue. The IPC_NOWAIT flag is specified so the
process cannot be blocked in the msgrcv routine. The MSG_NOERROR flag is
specified so requests that are larger than expected can be received. Standard
requests from the SRC to a subsystem are the same size32. So, handle_SRC_req
confirms that the size returned by msgrcv is the size that is expected. The data
in the srchdr structure is saved by a routine called srcrrqs, which is provided by
the SRC for that purpose. The handle_SRC_req routine looks at the action field in
the subreq structure to determine what request is being made, and takes the
appropriate action. Other routines in the daemon are called to handle the STOP
and STATUS requests. If the request being made is some invalid request or a
request not supported by this daemon, handle_SRC_req replies with an error code.

There are three points in Figure 61, part �3� where the extra mtype field in the
srcreq structure is taken into account. First, the size of the buffer passed to the
msgrcv routine must not include the size of the mtype field. Second, the size
returned by msgrcv does not include the size of the mtype field. Lastly, when
srcrrqs is called to save away the srchdr structure, the pointer passed to the
routine must be offset by the size of the mtype field. Contrast the code in
Figure 61, part �3� with similar code in Figure 52, part �6� that obtains the next
SRC request from a socket.

If you compare the code in Figure 61, part �3� through part �5� that sends
replies to the requesting process, with the code in Figure 52 on page 93 that
sends replies to the requesting process, you will see that the techniques used to
send replies to SRC requests are identical for a subsystem receiving requests
from a socket and a subsystem receiving requests from a message queue.

5.6.9 Problems with SRC Message Queues
There are some problems with how the SRC daemon, srcmstr, handles message
queues. The following problems have been reported:

 1. If an SRC subsystem is run under the root user and the subsystem is then
stopped and the user for the subsystem is changed to a non-root user, any
attempts to start the subsystem will fail until one of the following occurs:

• The system is rebooted.
• The user for the subsystem is changed back to root.
• The message queue created when the subsystem was last run is

removed with ipcrm.

32 Subsystem-defined requests can be larger. See 5.6.10, “Processing Subsystem-Defined Requests” on page 125 for
information about subsystem-defined requests.
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 2. Any user on the system can send a request to an SRC subsystem using
message queue communication. The user just needs to know a little about
the structures used to send SRC requests to a subsystem, and how to send a
request on a message queue. Such a user can write a simple program to
cause the subsystem to terminate.

These problems are illustrated using the subsystem whose code was shown in
Figure 61. Assuming the executable code for this program is installed in
/usr/lpp/somelpp/bin/SRC_msq, the subsystem is defined to the SRC as subsystem
des.ex.msq in Figure 62. Notice that the program should be executable by the
root user and any user in the system group.

# mkssys -s des.ex.msq -p /usr/lpp/somelpp/bin/SRC_msq -u 0 \
-I 195948557 -m 48879 -G daes

0513-071 The des.ex.msq Subsystem has been added.

# odmget -q ″subsysname = ′ des.ex.msq′ ″  SRCsubsys

SRCsubsys:
subsysname = ″des.ex.msq″
synonym = ″″
cmdargs = ″″
path = ″ /usr/lpp/somelpp/bin/SRC_msq″
uid = 0
auditid = 0
standin = ″ /dev/console″
standout = ″ /dev/console″
standerr = ″ /dev/console″
action = 2
multi = 0
contact = 1
svrkey = 195948557
svrmtype = 48879
priority = 20
signorm = 0
sigforce = 0
display = 1
waittime = 20
grpname = ″daes″

# ls -l /usr/lpp/somelpp/bin/SRC_msq
-r-xr-x--- 1 root system 2148 Aug 18 13:20 /usr/lpp/somelpp/bin/SRC_msq

Figure 62. Defining the des.ex.msq Subsystem

In Figure 63 on page 123, the des.ex.msq subsystem is executed under the root
user, but then cannot be executed under the agarsys user, who is in the system
group, until the message queue left behind by the first execution of des.ex.msq is
removed.
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# ipcs -q
IPC status from /dev/mem as of Sat Aug 19 12:43:17 EDT 1995
T ID KEY MODE OWNER GROUP
Message Queues:
q 0 0x4107001c -Rrw-rw---- root printq

# startsrc -s des.ex.msq
0513-059 The des.ex.msq Subsystem has been started. Subsystem PID is 18344.

# stopsrc -s des.ex.msq
0513-044 The stop of the des.ex.msq Subsystem was completed successfully.

# ipcs -q
IPC status from /dev/mem as of Sat Aug 19 12:44:51 EDT 1995
T ID KEY MODE OWNER GROUP
Message Queues:
q 0 0x4107001c -Rrw-rw---- root printq
q 323585 0x0badf00d --rw-rw-rw- root system

# grep agarsys /etc/passwd
agarsys:*:1825:0::/home/agarsys:/usr/bin/ksh

# chssys -s des.ex.msq -u 1825
0513-077 Subsystem has been changed.

# startsrc -s des.ex.msq
0513-033 The des.ex.msq Subsystem could not be started.
The Subsystem′ s communication queue could not be established.

# ipcrm -q 323585

# ipcs -q
IPC status from /dev/mem as of Sat Aug 19 12:46:13 EDT 1995
T ID KEY MODE OWNER GROUP
Message Queues:
q 0 0x4107001c -Rrw-rw---- root printq

# startsrc -s des.ex.msq
0513-059 The des.ex.msq Subsystem has been started. Subsystem PID is 18368.

# ipcs -q
IPC status from /dev/mem as of Sat Aug 19 12:46:37 EDT 1995
T ID KEY MODE OWNER GROUP
Message Queues:
q 0 0x4107001c -Rrw-rw---- root printq
q 327681 0x0badf00d --rw-rw-rw- agarsys system

Figure 63. Attempts to Run des.ex.msq with Different Users

The sequence of commands in Figure 64 on page 124 show that when
des.ex.msq is run under the root user, a non-root user that is not in the system
group cannot stop des.ex.msq with stopsrc, but can easily write a program,
sendstop, to cause the subsystem to stop. In Figure 64 on page 124, the #
prompt is for the root user, and the $ prompt is for the user agar.
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# stopsrc -s des.ex.msq
0513-044 The stop of the des.ex.msq Subsystem was completed successfully.

# chssys -s des.ex.msq -u 0
0513-077 Subsystem has been changed.

# startsrc -s des.ex.msq
0513-059 The des.ex.msq Subsystem has been started. Subsystem PID is 18378.

# ps -fp 18378
UID PID PPID C STIME TTY TIME CMD

 root 18378 2600 0 12:50:15 - 0:00 /usr/lpp/somelpp/bin/SRC_msq

$ whoami
agar

$ groups
staff

$ lssrc -s des.ex.msq
Subsystem Group PID Status
 des.ex.msq daes 18378 active

$ stopsrc -s des.ex.msq
ksh: stopsrc: 0403-006 Execute permission denied.

$ lssrc -s des.ex.msq
Subsystem Group PID Status
 des.ex.msq daes 18378 active

$ ./sendstop 195948557 48879

$ lssrc -s des.ex.msq
Subsystem Group PID Status
 des.ex.msq daes inoperative

Figure 64. Stopping des.ex.msq by an Unauthorized User

Figure 65 on page 125 shows the source for the program, sendstop, that can be
used to stop any subsystem accepting message queue communications from the
SRC. The program takes two parameters: the key of the message queue to
which a stop request is to be sent, and the type of the message to send to the
message queue. This information is easily obtained from the SRCsubsys ODM
object describing the subsystem.
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <sys/ipc.h>
#include <sys/msg.h>

#define SRCBYQUEUE
#include <spc.h>

int main(int argc, char **argv)
{

struct srcreq srcreq;
int msqkey, msqtype, msqid;

if (argc < 3) {
fprintf(stderr, ″USAGE: %s msq_key msq_type\n″ ,  argv[0]);
return 1;

}

msqkey = atoi(argv[1]);
msqtype = atoi(argv[2]);

if ((msqid = msgget(msqkey, 0)) == -1) {
perror(″msgget()″ ) ;
return 1;

}

memset(&srcreq, ′ \0′ ,  sizeof srcreq);
srcreq.mtype = msqtype;
srcreq.subreq.action = STOP;
srcreq.subreq.object = SUBSYSTEM;

if (msgsnd(msqid, &srcreq, sizeof srcreq - sizeof(long),
IPC_NOWAIT) == -1) {

perror(″msgsend()″ ) ;
return 1;

}

return 0;
}

Figure 65. Source for the sendstop Program

5.6.10 Processing Subsystem-Defined Requests
The standard requests defined by the SRC are START, STOP, TRACE, STATUS, and
REFRESH. A subsystem may choose to define additional requests. Additional
requests are represented in the action field of the subreq structure by values
larger than 255; values through 255 are reserved by the SRC. The parm1 and
parm2 fields can be used as request modifiers for additional requests, as they are
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for the SRC-defined requests. The other fields of the subreq structure should be
used by additional requests as they are by the SRC-defined requests.

The daemon support routines support subsystems that would like to handle
subsystem-defined requests. They even support request parameters beyond
those that fit in the subreq structure. See Chapter 10, “Daemon Support
Routines” on page 245 for the details.

If a subsystem defines additional SRC requests, some client must send the
requests. Usually this involves writing a new program that can be used to send
the request. Such a program can use the srcsrqt routine provided by the SRC
library to send the request and receive the reply. See the man page for srcsrqt
in AIX Version 4.1: Technical Reference, Volume 2: Base Operating System and
Extensions, SC23-2615. A model for such a program is discussed in this book in
Chapter 12, “New SRC Program Support” on page 303. In most cases it should
not be necessary to modify the model; the needed customization can be
performed through compile time definitions.

5.6.11 Compiling and Linking an SRC Daemon
A daemon under SRC control which receives SRC requests through a socket
should be compiled with the macro _BSD defined to be 43 or 44. Such a daemon
should be linked with the libsrc.a, libbsd.a, and libc.a libraries.

There are no special compilation requirements for a daemon under SRC control
which receives SRC requests through a message queue. Such a daemon should
be linked with the libsrc.a and libc.a libraries.

There are no special compilation or linking requirements for a daemon under
SRC control which receives SRC requests through signals.

5.6.12 Multi-Threaded Daemons and the SRC
It is expected that some daemons written by Scalable POWERparallel Systems,
RS/6000 Division, will be multi-threaded. Unfortunately, the library routines
provided by AIX to support communications between the SRC and
SRC-controlled daemons are not thread-safe. Until those routines are made
thread-safe, a multi-threaded daemon under SRC control may be limited to
signal communications from the SRC.

5.7 Programming an SRC Notification Method
If a daemon running under the control of the SRC uses no other recovery
mechanism, it should support the use of the SRC notification mechanism. If
there are no default recovery actions that will be shipped to the customer, the
documentation of the subsystem should include instructions to the customer on
how to install an SRC notification method for the subsystem. These instructions
should include information about the dae_msg program, an SRC notification
support program documented in Appendix B, “SRC Notification Support
Programs man Pages” on page 385.

If there are default recovery actions that will be shipped to the customer, the
installation of the subsystem should add an object to the SRCnotify object class,
defining an SRC notification method for the subsystem. The notification method
installed should be the dae_notify program, an SRC notification support program
documented in Appendix B, “SRC Notification Support Programs man Pages” on
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page 385. The documentation of the subsystem should include instructions
about the user exits provided by the SRC notification support programs.

The SRC notification support programs are explained in Chapter 11, “SRC
Notification Support Programs” on page 295.
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Chapter 6. Managing a Daemon with the Internet Superserver

The inetd daemon is usually started at system boot time. It reads its
configuration file, usually /etc/inetd.conf, to determine what Internet services it
supports. Each Internet service corresponds to a TCP/IP or UDP/IP port. The
inetd daemon reads the /etc/services file to obtain the mappings from services
to ports. The inetd daemon waits for client requests to arrive on the ports
corresponding to the services supported by inetd. When a client request arrives
on a port, the information from the inetd configuration file is used to determine
what should be done. The information may indicate that the inetd daemon itself
supports clients of the service represented by the port. In that case, inetd
services the client request. More often, clients of the service represented by the
port are supported by another daemon. In this case, inetd creates a child
process running the appropriate daemon. The inetd configuration file provides
the path name of the daemon, the parameters to be passed to the daemon, the
user ID under which the daemon process should run, and whether inetd should
allow multiple processes to run the daemon at the same time.

A daemon may be placed under inetd control if it has the following
characteristics:

• The daemon does not have to start running when the system is booted.

• An instance of the daemon does not have to continuously run to monitor the
system.

• It is convenient for an instance of the daemon to be spawned for each client
requesting services from the daemon.

• The daemon communicates with clients through the socket network
programming interface to UDP/IP or TCP/IP.

• It is acceptable to the daemon that it will not be restarted by inetd if it
terminates abnormally.

• When the daemon is running on an AIX system, the limited SRC support
provided by inetd is acceptable.

The remainder of this chapter discusses inetd configuration files, and the
relationship between inetd and the SRC. The important points made about
putting a new daemon under inetd control are:

• A description of the daemon, and the Internet service it provides, must be
added to the default inetd configuration file, /etc/inetd.conf.

• A mapping from Internet service to port number must be added to the
/etc/services file.

• On an AIX system, a new SRC subserver must be defined. The new
subserver must refer to the name of the new Internet service and the port
number associated with the service.

• The inetd daemon must be forced to re-read its configuration files. On an
AIX system, this can be done with the refresh command. On another type of
system, the HUP signal should be sent to the inetd process with the kill
command.
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6.1 The Configuration and Services Files
Each entry in the inetd configuration file, which is /etc/inetd.conf by default,
has the following format:

ServiceName SocketType ProtocolName Wait/NoWait UserName ServerPath ServerArgs

• The ServiceName field names an Internet service supported by inetd.
• The ProtocolName field indicates the protocol used by the service. Protocols

are defined in the /etc/protocols file. The two protocols supported by inetd
are udp and tcp.

• The SocketType field indicates the type of socket to be used for the service;
the common values are stream, for a stream socket, and dgram, for a
datagram socket.

• The Wait/NoWait field contains the value wait or nowait. If wait is specified,
only one client of the service is supported at one time. If nowait is specified,
multiple clients of the service can be supported concurrently.

• The UserName field specifies the user name under which the daemon
supporting the service should run.

• The ServerPath field specifies the full path name of the daemon program that
supports clients of the service.

• The ServerArgs field specifies the parameters to be passed to the daemon.

For full documentation on the meaning of the fields and their possible values,
refer to the “inetd.conf File Format for TCP/IP” entry in Chapter 2. “File Formats”
of AIX Version 4.1: Files Reference, SC23-2512.

Each entry of the /etc/services file has the following format:

ServiceName PortNumber/ProtocolName Aliases

The inetd daemon uses the ServiceName and ProtocolName fields to associate
/etc/services entries with inetd configuration entries. Given an entry in the
inetd configuration file, the values of the ServiceName and ProtocolName fields are
used to find the associated entry in the /etc/services file. The PortNumber field in
the /etc/services entry contains the port number associated with the service
described in the inetd configuration file. For full documentation on the meaning
of the fields and their possible values, refer to the “services File Format for
TCP/IP” entry in Chapter 2. “File Formats” of AIX Version 4.1: Files Reference,
SC23-2512.

Figure 66 on page 131 shows the information stored in /etc/inetd.conf and
/etc/services about the telnet service. Based on these entries, you know these
statements are true about how the telnet service is supported:

• The inetd daemon waits, through a stream socket, for a connection request
to arrive on TCP port 23.

• When a connection request arrives on the port, the inetd daemon
establishes a connection with the client and creates a child process.

• The child process is run by the root user.
• File descriptors 0, 1, and 2 of the child process are associated with the

stream socket connected to the client.
• The child process executes the program /usr/sbin/telnetd; no parameters

are passed to the program.
• The telnetd program services the client.
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• The inetd process does not wait for the child process to terminate before
waiting for another connection request to arrive on TCP port 23.

# grep ″^telnet″ /etc/inetd.conf
telnet stream tcp nowait root /usr/sbin/telnetd telnetd

# grep ″^telnet″ /etc/services
telnet 23/tcp

Figure 66. Information about the telnet Service

6.2 Updating the Configuration and Services Files
When a daemon is placed under inetd control, the inetd configuration and
/etc/services files need to be updated with information about the daemon and
the service.

In most systems, including AIX 4.1, the inetd configuration and /etc/services
files are updated with an editor or script language. After one or both of these
files have been updated, the inetd daemon should be told to re-read the files.
This can be done by sending the SIGHUP signal to the inetd process. On an AIX
system, it can also be done by using the refresh command. See Figure 67 for
examples.

# vi /etc/inetd.conf

# ps -e | grep inetd
5512 - 0:05 inetd

# kill -HUP 5512

# vi /etc/services

# refresh -s inetd
0513-095 The request for subsystem refresh was completed successfully.

Figure 67. Causing inetd to Re-read Configuration Files

Previous versions of AIX stored the information about Internet services in the
Object Data Manager (ODM). In these versions of AIX, the /etc/inetd.conf and
/etc/services files were just traditional representations of data stored in the
ODM. The data was to be modified with the inetserv command; the files should
not have been updated directly with an editor. In AIX 4.1, information about
Internet services was taken out of the ODM, and there is no longer a need for
the inetserv command.

Chapter 6. Managing a Daemon with the Internet Superserver 131



6.3 The SRCsubsvr Object Class
On AIX, the inetd daemon is defined as an SRC subsystem. For information
about how SRC subsystems are defined, refer to 5.2, “Subsystem Definition” on
page 62. The SRC definition for inetd is shown in Figure 68. Notice that if inetd
terminates abnormally, it is not respawned by the SRC (the action value is 2).
Also notice that the SRC sends requests to inetd through a socket (the contact
value is 3). This means the inetd subsystem could support all the SRC requests.
The inetd subsystem does in fact support the subsystem stop, trace, and refresh
requests. It also supports several subserver requests.

# odmget -q ″subsysname = ′ inetd′ ″  SRCsubsys

SRCsubsys:
subsysname = ″inetd″
synonym = ″″
cmdargs = ″″
path = ″ /usr/sbin/inetd″
uid = 0
auditid = 0
standin = ″ /dev/console″
standout = ″ /dev/console″
standerr = ″ /dev/console″
action = 2
multi = 0
contact = 3
svrkey = 0
svrmtype = 0
priority = 20
signorm = 0
sigforce = 0
display = 1
waittime = 20
grpname = ″tcpip″

Figure 68. The SRC Definit ion of the inetd Subsystem

An SRC subsystem can support subservers. The only known subsystem to do so
is inetd. A subserver can represent some subset of the function delivered by the
subsystem. A subserver might represent a process that the subsystem controls,
but that is not required. The inetd subsystem uses subservers to represent
Internet services. By defining an SRC subserver object for each Internet service
supported by inetd, SRC commands can refer to specific Internet services.

Figure 69 on page 133 shows the definition of the SRCsubsvr object class, as
revealed by the odmshow command. The fields have the following meanings:
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# odmshow SRCsubsvr
class SRCsubsvr {

char sub_type[30]; /* offset: 0xc ( 12) */
char subsysname[30]; /* offset: 0x2a ( 42) */
short sub_code; /* offset: 0x48 ( 72) */
};

/*
 columns: 3

structsize: 0x4c (76) bytes
data offset: 0x1e8
population: 19 objects (19 active, 0 deleted)

*/

Figure 69. The Definit ion of the SRCsubsvr Object Class

• The subsysname field specifies the name of the subsystem with which the
subserver is associated. Each subserver is associated with a subsystem.
When an SRC command is applied to a subserver, a request is sent to the
subsystem associated with the subserver.

• The sub_type field specifies the name of the subserver. This name is used
on SRC commands to refer to the subserver.

• The sub_code field is an integer that identifies the subserver to its associated
subsystem. When an SRC subserver request is sent to a subsystem, the
subserver to which the request applies is specified by a sub_code field value.

For inetd subservers, the subsysname field value is “inetd,” the sub_type field
value is the name of an Internet service as specified in /etc/inetd.conf and
/etc/services, and the sub_code field value is the port associated with the
Internet service. Figure 70 shows an example. The telnet subserver is
associated with the inetd subsystem. Furthermore, the sub_code field value for
the telnet subserver is 23, which is the port number associated with the telnet
Internet service.

# grep ″^telnet″ /etc/inetd.conf
telnet stream tcp nowait root /usr/sbin/telnetd telnetd

# grep ″^telnet″ /etc/services
telnet 23/tcp

# odmget -q ″sub_type = ′ telnet′ ″  SRCsubsvr

SRCsubsvr:
sub_type = ″telnet″
subsysname = ″inetd″
sub_code = 23

Figure 70. The Definit ion of the telnet Subserver

When a daemon is placed under inetd control, a subserver should be defined in
SRCsubsvr for the service being provided by the daemon. SRC subserver
definitions are made with the mkserver command, changed with the chserver
command, and removed with the rmserver command. These commands
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manipulate objects in the SRCsubsvr object class and notify the SRC daemon,
srcmstr, of the changes. Figure 71 on page 134 shows the mkserver command
that would create the telnet subserver definition seen in Figure 70 if the
subserver had not already been defined.

# mkserver -t telnet -s inetd -c 23
0513-063 Subserver type already exists on file.

Figure 71. Using mkserver to Create a SRC Subserver

6.4 Using SRC Commands with the inetd Subsystem
This section illustrates how SRC commands can be applied to the inetd
subsystem and to specific inetd subservers.

6.4.1 Starting, Stopping, and Listing Status of the Subsystem
Section 5.1, “The SRC Commands” on page 50, gave several examples of using
the SRC commands to make requests of subsystems. Many of these examples
were applied to the inetd subsystem. The inetd subsystem can be stopped with
stopsrc, started with startsrc, queried for its status with lssrc, put into debug
mode with traceson, taken out of debug mode with tracesoff, and refreshed with
refresh. Figure 72 on page 135 repeats some examples using stopsrc, startsrc,
and lssrc. Notice that the output for lssrc -l includes information about the
Internet services supported by inetd. Figure 67 on page 131 showed an
example using refresh. Examples of inetd debugging mode and the traceson
and tracesoff commands are provided in section 6.4.3, “Debugging the
Subsystem and Its Subservers” on page 137.
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# stopsrc -s inetd
0513-044 The stop of the /usr/sbin/inetd Subsystem was completed successfully.

# startsrc -s inetd
0513-059 The inetd Subsystem has been started. Subsystem PID is 5560.

# lssrc -s inetd
Subsystem Group PID Status
inetd tcpip 5560 active

# lssrc -ls inetd
Subsystem Group PID Status
inetd tcpip 5560 active

Debug Inactive

Signal Purpose
 SIGALRM Establishes socket connections for failed services
 SIGHUP Rereads configuration database and reconfigures services

 SIGCHLD Restarts service in case the service dies abnormally

Service Command Arguments Status
 ttdbserverd /usr/dt/bin/rpc.ttdbserverd rpc.ttdbserverd 100083 active
 time internal active
 daytime internal active
 chargen internal active
 discard internal active
 time internal active
 daytime internal active
 chargen internal active
 discard internal active
 echo internal active
 pcnfsd /usr/sbin/rpc.pcnfsd pcnfsd 150001 1-2 active
 rwalld /usr/lib/netsvc/rwall/rpc.rwalld rwalld 100008 1 active
 rusersd /usr/lib/netsvc/rusers/rpc.rusersd rusersd 100002 1-2 active

 rstatd /usr/sbin/rpc.rstatd rstatd 100001 1-3 active
 ntalk /usr/sbin/talkd talkd active
exec /usr/sbin/rexecd rexecd active
login /usr/sbin/rlogind rlogind active
telnet /usr/sbin/telnetd telnetd active
ftp /usr/sbin/ftpd ftpd active

Figure 72. Starting, Stopping, and Obtaining Status from inetd with the SRC

6.4.2 Starting, Stopping, and Listing Status of Subservers
The stopsrc, startsrc, and lssrc commands can be applied to a particular inetd
subserver. This is accomplished by using the -t flag to identify a subserver,
instead of using the -s flag to identify a subsystem. When the stopsrc command
is applied to an inetd subserver, the definition of the corresponding Internet
service is commented out in the inetd configuration file, and the inetd daemon is
forced to reread its configuration file. This disables the inetd support for the
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Internet service. If the stop request made is subserver stop normal (-f is not
specified), processes already running to provide the Internet service to clients
are not affected, but new requests for the service are rejected. For example,
when the commands in Figure 73 are executed, current telnet sessions are not
affected, but new telnet sessions cannot be established. If the stop request
made is subserver stop forced (-f is specified), processes already running to
provide the Internet service to clients are terminated33, and new requests for the
service are rejected.

# grep ″telnet″ /etc/inetd.conf
telnet stream tcp nowait root /usr/sbin/telnetd telnetd

# lssrc -ls inetd | grep telnet
 telnet /usr/sbin/telnetd telnetd active

# ps -e | grep telnet
6366 - 1:19 telnetd
7276 - 0:01 telnetd
7802 - 0:03 telnetd
9568 - 0:00 telnetd

 10352 - 0:01 telnetd

# stopsrc -t telnet
0513-127 The telnet subserver was stopped successfully.

# grep ″telnet″ /etc/inetd.conf
#telnet stream tcp nowait root /usr/sbin/telnetd telnetd

# lssrc -ls inetd | grep telnet

# ps -e | grep telnet
6366 - 1:19 telnetd
7276 - 0:01 telnetd
7802 - 0:03 telnetd
9568 - 0:00 telnetd

 10352 - 0:01 telnetd

# telnet $(hostname)
Trying...
telnet: connect: Connection refused
telnet> quit

Figure 73. Using stopsrc to Disable inetd Support for an Internet Service

When the startsrc command is applied to an inetd subserver, the definition of
the corresponding Internet service is uncommented in the inetd configuration
file, and the inetd daemon is forced to reread its configuration file. This
re-enables the inetd support for the Internet service. For example, the inetd
support for the telnet Internet service is re-enabled as shown in Figure 74 on
page 137.

33 This is the intended behavior, but not the current behavior. Currently, the subserver stop forced request does not terminate
processes providing the Internet service to clients, because of a defect in inetd. The defect has been reported.
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# startsrc -t telnet
0513-124 The telnet subserver has been started.

# grep ″telnet″ /etc/inetd.conf
telnet stream tcp nowait root /usr/sbin/telnetd telnetd

# lssrc -ls inetd | grep telnet
 telnet /usr/sbin/telnetd telnetd active

# telnet $(hostname)

AIX Version 4
(C) Copyrights by IBM and by others 1982, 1994.
login:

Figure 74. Using startsrc to Enable inetd Support for an Internet Service

When the lssrc command is applied to a particular inetd subserver, only
information about the particular subserver is displayed. The information
displayed about the subserver is no different than what is displayed when lssrc
-l is applied to the inetd subsystem34.

6.4.3 Debugging the Subsystem and Its Subservers
The inetd subsystem supports the SRC subsystem trace requests. When the
traceson command is applied to the inetd subsystem, the subsystem goes into
debugging mode. As discussed in 5.1.5, “The traceson and tracesoff
Commands” on page 58, inetd logs messages when in debugging mode. It will
also turn on the SO_DEBUG socket option for sockets it creates while in debugging
mode. The information traced for a socket with the SO_DEBUG option turned on
can be displayed with the trpt command.

Figure 75, part �1� shows an example where telnet socket activity is traced.
The first lssrc command shows that the inetd subsystem is not in debugging
mode. Then the traceson command is used to tell the inetd subsystem to go into
debugging mode. The second lssrc command shows that the inetd subsystem
is in debugging mode. Whether by design or accident, inetd has not actually
turned on the SO_DEBUG socket option for any of its sockets yet. Once inetd is in
debugging mode, the Internet service of interest must be disabled and
re-enabled to cause inetd to turn on the SO_DEBUG socket option for the socket
used to support the service. This is done with the stopsrc and startsrc
commands; the telnet subserver is stopped, then started. Next, the trpt
command is executed to follow TCP tracing records. Tracing records are
generated when a telnet request is received.

34 In AIX 3.2.5, when lssrc is applied to an inetd subserver, information is displayed about each process currently running that is
supporting a client of the corresponding Internet service. The information includes the PID of the process, and the hostname
and IP address on which the client is running. This information disappeared in AIX 4.1. This has been reported as a defect.
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# lssrc -ls inetd | grep ″^Debug″
Debug Inactive

# traceson -s inetd
0513-091 The request to turn on tracing was completed successfully.

# lssrc -ls inetd | grep ″^Debug″
Debug Active

# stopsrc -t telnet
0513-127 The telnet subserver was stopped successfully.

# startsrc -t telnet
0513-124 The telnet subserver has been started.

# trpt -f -s -a

124 ESTABLISHED:user RCVD -> ESTABLISHED
rcv_nxt 5ceb762d rcv_wnd 4000 snd_una 4934004e snd_nxt 493400cd snd_max

493400cd
snd_wl1 5ceb762a snd_wl2 4934004e snd_wnd 4000

124 ESTABLISHED:user SEND -> ESTABLISHED
rcv_nxt 5ceb762d rcv_wnd 4000 snd_una 4934004e snd_nxt 493400cd snd_max

493400cd
snd_wl1 5ceb762a snd_wl2 4934004e snd_wnd 4000

129 ESTABLISHED:input (src=9.117.10.14,4571,
dst=129.40.93.113,23)5ceb762d@49340
0cd(win=4000)<ACK> -> ESTABLISHED

rcv_nxt 5ceb762d rcv_wnd 4000 snd_una 493400cd snd_nxt 493400cd snd_max
493400cd

snd_wl1 5ceb762d snd_wl2 493400cd snd_wnd 4000
129 ESTABLISHED:output (src=129.40.93.113,23,
dst=9.117.10.14,4571)[493400cd..49
3400d0)@5ceb762d(win=4000)<ACK,PUSH> -> ESTABLISHED

rcv_nxt 5ceb762d rcv_wnd 4000 snd_una 493400cd snd_nxt 493400d0 snd_max
493400d0

snd_wl1 5ceb762d snd_wl2 493400cd snd_wnd 4000
149 ESTABLISHED:input (src=9.117.10.14,4571,
dst=129.40.93.113,23)5ceb762d@49340
0d0(win=4000)<ACK> -> ESTABLISHED

rcv_nxt 5ceb762d rcv_wnd 4000 snd_una 493400d0 snd_nxt 493400d0 snd_max
493400d0

snd_wl1 5ceb762d snd_wl2 493400d0 snd_wnd 4000

Figure 75 (Part 1 of 2). Using the inetd Debug Mode

138 Writing Reliable AIX Daemons 



�2�
# tracesoff -s inetd
0513-093 The request to turn off tracing was completed successfully.

# lssrc -ls inetd | grep ″^Debug″
Debug Inactive

# stopsrc -t telnet
0513-127 The telnet subserver was stopped successfully.

# startsrc -t telnet
0513-124 The telnet subserver has been started.

Figure 75 (Part 2 of 2). Using the inetd Debug Mode

Figure 75, part �2� shows the inetd subsystem being taken out of debugging
mode. The tracesoff command is applied to the inetd subsystem to get it out of
debug mode. Then the telnet subserver is disabled and re-enabled with the
stopsrc and startsrc commands. This causes inetd to re-create the socket
supporting the telnet service; the re-created socket will not have the SO_DEBUG
socket option turned on. It should be noted that telnet sessions that were
started when inetd was in debugging mode will continue to generate TCP trace
records.

For more information about TCP tracing records see the trpt and netstat man
pages in AIX Version 4.1: Command Reference, SBOF-1851.

6.5 Programming a Daemon under inetd Control: A Word of Caution
It is not unusual for a daemon under inetd control to make itself a session
leader or a process group leader. This might be attempted with code similar to
that in Figure 76 on page 140. This approach will work when inetd is not
running in debug mode. But, when inetd is running in debug mode, the call to
setsid will fail. This is because when inetd is in debug mode, it makes a
created process a session leader before issuing exec for the daemon program. If
the daemon program executes the code fragment in Figure 76 on page 140, the
call to setsid will fail, and the daemon will exit. The setsid function call fails
because the process is a process group leader. Similar problems occur when
using other functions that attempt to make the process a process group leader.
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#include <sys/types.h>
#include <unistd.h>

.

.

.

if (setsid() == (pid_t)-1) {
exit(1);

}

.

.

.

Figure 76. Improper Method to Make an inetd Process a Session Leader

It is recommended that the approach taken in 3.4, “Disassociate the Daemon
from Its Controlling Terminal” on page 25 be used. In that section, code is
shown that calls setsid, ignores the return code from setsid, and then confirms
that the process is a session leader without a controlling terminal.
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Chapter 7. Signal Handling

On UNIX systems, dealing with signals is not peculiar to daemons. However,
programming a daemon tends to require a more sophisticated use of signals
than other types of programs. The improper handling of signals can negatively
affect a daemon′s reliability. This chapter discusses some considerations to
allow for more reliable handling of signals.

This chapter is not a comprehensive tutorial about signal handling. Chapter 10,
“Signals” in Advanced Programming in the UNIX Environment, W. Richard
Stevens, 1992, Addison-Wesley Publishing Company is recommended, as are the
XPG4 man pages for the signal-related routines.

7.1 Choosing among Signal Routines
Signal-related routines have undergone much change on UNIX systems. Efforts
to improve the reliability of signal handling have introduced additional
signal-related routines. The desire to support old programs results in the
continued existence of obsolete routines. As a result, there is a large collection
of signal-related routines on modern UNIX systems.

A modern UNIX system might have four or more collections of signal-related
routines. Which signal-related routines should a daemon writer use?

7.1.1 The signal Routine
The first collection is composed of one routine, signal. This is the oldest
signal-related routine available. It has a simple interface, which makes it
tempting to use. However, it has some serious problems. The major problems
with the signal routine are:

• When an installed signal handler is called, the disposition of the signal for
which it is called is changed back to the default. If the signal is delivered to
the process again before the signal handler is re-installed, the default action
for the signal will take place. This is often process termination.

• There is no mechanism to block the delivery of a signal.

Figure 77 on page 142 shows the source code for an example program,
signal_user, which uses the signal routine to install a signal handler. The main
routine installs sig_handler as the signal handler for the SIGUSR1 signal, and sits
in a loop forever. When a process running this program receives the SIGUSR1
signal, the sig_handler routine executes, doing some busy work. If the SIGUSR1
signal is delivered to the process again, the process will terminate, because the
default disposition of the SIGUSR1 signal is to terminate the process. This is
shown in Figure 78 on page 143.
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#include <unistd.h>
#include <stdlib.h>
#include <signal.h>

#define HOW_BUSY 10000000

char msg_in[] = ″Entered the signal handler.\n″ ;
char msg_out[] = ″Leaving the signal handler.\n″ ;

int busy_work[HOW_BUSY];

void sig_handler (int signo)
{

int i;

write(STDOUT_FILENO, msg_in, sizeof msg_in - 1);

for (i = 0; i < HOW_BUSY; i++) {
busy_work[i] = i;

}

write(STDOUT_FILENO, msg_out, sizeof msg_out - 1);

return;
}

int main(int argc, char **argv)
{

if (signal(SIGUSR1, sig_handler) == SIG_ERR) {
exit(1);

}

while (1 == 1) {
sleep(60);

}

return 0;
}

Figure 77. Source for the signal_user Program
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$ ./signal_user &
[2] 8982
$
$ kill -USR1 8982
$ Entered the signal handler.

$ kill -USR1 8982
$
[2] + User signal 1 ./signal_user &

Figure 78. Running the signal_user Program

Most signal handlers installed by the signal routine will re-install the signal
handler immediately. This is shown in the source code in Figure 79 on
page 144 for the program signal_user2. This makes it less likely that a signal
reverting to its default disposition will cause the program to terminate. However,
this can still happen. In signal_user2, there is still a period of time in sig_handler
in which the signal has its default disposition. In Figure 80 on page 145,
signal_user2 is started, and then bombarded with the SIGUSR1 signal. The
process running the signal_user2 program continues to run as long as the
SIGUSR1 signal is delivered when sig_handler is installed as the SIGUSR1 signal
handler. Eventually, the SIGUSR1 signal is delivered when sig_handler is not
installed as the SIGUSR1 signal handler, and the process terminates.
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#include <unistd.h>
#include <stdlib.h>
#include <signal.h>

#define HOW_BUSY 10000000

char msg_in[] = ″Entered the signal handler.\n″ ;
char msg_out[] = ″Leaving the signal handler.\n″ ;

int busy_work[HOW_BUSY];

void sig_handler (int signo)
{

int i;

(void) signal(SIGUSR1, sig_handler);

write(STDOUT_FILENO, msg_in, sizeof msg_in - 1);

for (i = 0; i < HOW_BUSY; i++) {
busy_work[i] = i;

}

write(STDOUT_FILENO, msg_out, sizeof msg_out - 1);

return;
}

int main(int argc, char **argv)
{

if (signal(SIGUSR1, sig_handler) == SIG_ERR) {
exit(1);

}

while (1 == 1) {
sleep(60);

}

return 0;
}

Figure 79. Source for the signal_user2 Program
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$ ./signal_user2 &
[1] 9564

$ while true; do kill -USR1 9564; done

Entered the signal handler.
Entered the signal handler.
Entered the signal handler.

.

.

.

Entered the signal handler.
Entered the signal handler.
Entered the signal handler.
Entered the signal handler.
Entered the signal handler.
Entered the signal handler.
Entered the signal handler.
Entered the signal handler.
Entered the signal handler.

[1] + User signal 1 ./signal_user2 &
$

Figure 80. Running the signal_user2 Program

Notice in Figure 80 that while the SIGUSR1 signal handler is executing, another
occurrence of the signal can cause the signal handler to run again, interrupting
the first execution of the signal handler. This behavior is not normally desirable.

Other problems with the signal routine are:

• The current disposition of a signal cannot be checked without changing its
disposition.

• There is no way to control whether interrupted system calls are
automatically restarted.

Due to the serious problems associated with the signal routine, it is generally
described as unreliable. It is not recommended for use in new programs. The
sigaction routine, and its associated routines, are recommended for new
programs. See 7.1.4, “The sigaction Routine and Related Routines” on
page 146.

7.1.2 The sigset Routine and Related Routines
System V systems provide the sigset routine to install a signal handler. The
signal handler remains installed unless the program explicitly changes the
disposition of the signal. Since the signal′s disposition is not automatically
restored to its default, the most serious reliability problem associated with the
signal routine is eliminated. Furthermore, while the signal handler is executing,
the signal whose delivery caused the signal handler to execute is blocked from
further delivery until the signal handler finishes.
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Associated with the sigset routine are the sigignore, sighold, sigrelse, and
sigpause routines. The sigignore routine provides an alternative method for
setting the disposition of a signal to be ignored. The sighold, sigrelse, and
sigpause routines allow the program to control when signals are blocked, that is,
temporarily deferred, from delivery.

These routines are an improvement over the signal routine. However, it is
recommended that new programs use the sigaction routine and its associated
routines. See 7.1.4, “The sigaction Routine and Related Routines.”

7.1.3 The sigvec Routine and Related Routines
BSD systems provide the sigvec routine to install a signal handler. The sigvec
routine provides the same improvements over signal that sigset does. In
addition, it allows for control over whether restartable interrupted system calls
are restarted. See 7.6, “Automatic Restart of Interrupted System Calls” on
page 175 for a discussion of restarting interrupted system calls.

Associated with the sigvec routine are the sigblock, sigsetmask, and sigpause
routines. The sigblock, sigsetmask, and sigpause routines allow the program to
control when signals are blocked, that is, temporarily deferred, from delivery.
However, only signals 1 through 31 can be blocked by these routines.

These routines are an improvement over the signal routine. However, it is
recommended that new programs use the sigaction routine and its associated
routines. See the next section, 7.1.4, “The sigaction Routine and Related
Routines.”

7.1.4 The sigaction Routine and Related Routines
The sigaction routine is the POSIX-specified way to install reliable signal
handlers. It overcomes the problems associated with the signal routine. A
signal handler installed for a signal remains installed until the signal′s
disposition is explicitly changed by the program. Furthermore, while the signal
handler is executing, the signal whose delivery caused the signal handler to
execute is blocked from further delivery until the signal handler finishes. An
additional set of signals to be blocked during the execution of the signal handler
can be specified when sigaction is used to install a signal handler. The
sigaction routine also allows for the specification of flags that control how the
signal handler behaves. For example, one flag controls whether restartable
interrupted system calls are restarted automatically. The sigaction routine can
also be used to check the current disposition of a signal, without changing its
disposition.

Associated with the sigaction routine are the sigprocmask, sigpending, and
sigsuspend routines. These routines allow the program to control when signals
are blocked, that is, temporarily deferred, from delivery. This is done by setting
the process signal mask. The process signal mask is a signal set that controls
the delivery of signals to the process. Signal sets, in general, are manipulated
by the routines sigemptyset, sigfillset, sigaddset, sigdelset, and sigismember.
See the man pages for these routines for all the details.

Figure 81 on page 147 shows the source code for an example program,
sigaction_user. This program is similar to the signal_user program shown in
Figure 77 on page 142, except it uses the sigaction routine to install a signal
handler instead of the signal routine. The main routine installs sig_handler as
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the signal handler for the SIGUSR1 signal, and sits in a loop forever. When a
process running this program receives the SIGUSR1 signal, the sig_handler routine
executes, doing some busy work. If the SIGUSR1 signal is continuously delivered
to the process, the process will execute the sig_handler signal handler once at a
time, and it will never terminate due to the delivery of the SIGUSR1 signal. This is
shown in Figure 82 on page 148.

#include <unistd.h>
#include <stdlib.h>
#include <signal.h>

#define HOW_BUSY 10000000

char msg_in[] = ″Entered the signal handler.\n″ ;
char msg_out[] = ″Leaving the signal handler.\n″ ;

int busy_work[HOW_BUSY];

void sig_handler (int signo)
{

int i;

write(STDOUT_FILENO, msg_in, sizeof msg_in - 1);

for (i = 0; i < HOW_BUSY; i++) {
busy_work[i] = i;

}

write(STDOUT_FILENO, msg_out, sizeof msg_out - 1);

return;
}

int main(int argc, char **argv)
{

struct sigaction sa;

sa.sa_handler = sig_handler;
(void) sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;

if (sigaction(SIGUSR1, &sa, NULL) == -1) {
exit(1);

}

while (1 == 1) {
sleep(60);

}

return 0;
}

Figure 81. Source for the sigaction_user Program
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$ ./sigaction_user &
[1] 9624

$ while true; do kill -USR1 9624; done
Entered the signal handler.
Leaving the signal handler.
Entered the signal handler.
Leaving the signal handler.

.

.

.

Entered the signal handler.
Leaving the signal handler.
Entered the signal handler.
Leaving the signal handler.
Entered the signal handler.
^C

$ ps -p 9624
PID TTY TIME CMD

 9624 pts/0 30:48 sigaction_user
$

Figure 82. Running the sigaction_user Program

7.1.5 The Signal Routines and AIX
AIX supports all the signal routines mentioned above. It also supports variations
of some of the routines. These routines are in the libc.a, libc_r.a, and libbsd.a
l ibraries. The libbsd.a library holds BSD versions of routines also held in
libc.a. The libc.a and libc_r.a libraries hold all the other routines. The
routines in libc.a are not thread-safe, while the routines in libc_r.a are
thread-safe.

A program desiring the System V functionality of the signal routine should be
linked without the libbsd.a library, and with the libc.a or libc_r.a library. The
libbsd.a library includes a BSD version of the signal routine. This routine does
not have many of the faults of the System V version of signal. The disposition of
a signal whose signal handler was installed with the BSD version of signal does
not revert to the default when the signal handler is invoked. Furthermore, the
signal that caused a signal handler to be invoked is blocked while the signal
handler is running.

A program using the System V signal routines sigset, sigignore, sighold,
sigrelse, and sigpause should be linked with the libc.a or libc_r.a libraries.
Linking with the libbsd.a library will have no effect on these routines.

A program using the BSD signal routines sigvec, sigblock, sigsetmask, and
sigpause should be linked with the libbsd.a library. These routines are 4.3BSD
compatible. A program that calls sigvec but is not linked with the libbsd.a
library will not be using a 4.3BSD compatible version of sigvec. It will be using a
version of sigvec compatible with an old AIX version of sigvec. The old AIX
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version of sigvec does not support automatically restarting interrupted system
calls. The 4.3BSD compatible version of sigvec in libbsd.a allows the caller to
specify whether automatically restartable system calls are automatically
restarted or not.

A program using the POSIX-compliant signal routines sigaction, sigprocmask,
sigpending, sigsuspend, sigemptyset, sigfillset, sigaddset, sigdelset, and
sigismember should be linked with the libc.a or libc_r.a library. The functionality
of these routines will not be affected if the libbsd.a library is linked with the
program.

The standards warn against using different sets of signal-related routines to
change the disposition of the same signal in the same process. The standards
say the effects are undefined. This problem is mitigated to some degree in AIX,
because the two versions of the signal routine, the two versions of the sigvec
routine, and the sigset routine are all implemented by calling the sigaction
routine. This is fortunate for daemons. The init process uses sigaction to set
the disposition of signals. The srcmstr process uses the sigvec routine in libc.a
to set signal dispositions. Finally, the inetd process uses the sigvec routine in
libbsd.a to set signal dispositions. The daemon support routines described in
Chapter 10, “Daemon Support Routines” on page 245 use the sigaction routine
to set signal dispositions. This should work correctly whether the daemon was
started by init, srcmstr, inetd, or a shell. However, it is still recommended to
keep the mixed use of these routines to a minimum.

On AIX, if the disposition of any signal is changed by sigset or sighold, the
process runs with the “sigset signal handling style” until it calls one of the exec
functions. A child process will inherit the “sigset signal handling style” from its
parent process. In a process running with the “sigset signal handling style,” a
call to longjmp will not restore the process signal mask to the state it was in
when setjmp was called. In a process running without “sigset signal handling
style,” a call to longjmp will restore the process signal mask to the state it was
in when setjmp was called.

7.2 Atomic Access to a Variable
It is common for a signal handler to communicate with another signal handler, or
with the portion of the program not executed by a signal handler, using variables
in the program′s global memory. However, a program cannot generally assume
that it can atomically access a global variable without being interrupted by the
execution of a signal handler. A program can block the signals for which signal
handlers have been installed to protect access to global variables (see 7.3,
“Signal Handlers and Critical Sections” on page 154). However, there is one
data type for which blocking signals is not required.

The ANSI C standard defines a data type called sig_atomic_t35. A variable of
type sig_atomic_t can be accessed atomically. That is, the value of the variable
can be fetched, or a new value can be stored into the variable, without
interruption, even by the execution of a signal handler.

For purposes of portability, a program should assume that the only variables that
can be accessed atomically are those defined with type sig_atomic_t. The

35 As does the POSIX and X/OPEN standards.
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sig_atomic_t type is defined in signal.h. The sig_atomic_t type is required by
ANSI C to be “... the integral type of an object that can be accessed as an
atomic entity, even in the presence of asynchronous interrupts”36. The phrase
“integral type” means a variable of type sig_atomic_t can hold an integer value.
Since the ANSI C standard does not specify the size of the “integral type,” a
portable program should assume it is the smallest possible integral type, a
signed character. Since it is not specified whether the “integral type” is signed
or unsigned, a portable program should assume that a variable of type
sig_atomic_t cannot hold negative values. ANSI C requires an implementation
complying with the standard to define a constant, named SCHAR_MAX in limits.h,
that specifies the maximum value of a signed character in the implementation.
So, a portable program can assume that a variable of type sig_atomic_t can hold
an integer value ranging from 0 to SCHAR_MAX, inclusive. The ANSI C standard
also requires that the value of SCHAR_MAX be at least 127. Therefore, a variable of
type sig_atomic_t can portably hold a value from 0 to 127, inclusive.

A variable that is modified in signal handling routines and accessed in
non-signal handling routines should be defined with the type modifier volatile,
letting the compiler know that the value of the variable can change
asynchronously.

The standards only guarantee that a signal handler can store a value into a
global variable declared to be of type volatile sig_atomic_t. They do not define
what will happen if the value of such a variable is fetched in a signal handler.
The XPG4 standard states:

If the signal occurs other than as the result of calling abort(), kill() or
raise(), the behaviour is undefined if the signal handler calls any
function in the standard library other than one of the functions listed in
the table above37 or refers to any object with static storage duration other
than by assigning a value to a static storage duration variable of type
volatile sig_atomic_t.

Figure 83 on page 151 shows an example using a variable of type volatile
sig_atomic_t. The value of the variable stop_requested is initialized to 0, tested
in the main routine, and set to 1 in the signal handler named sig_handler.
Because the variable is of type sig_atomic_t, the main routine will never see an
intermediate value for stop_requested on any system complying with the ANSI C
standard. It might seem reasonable to declare stop_requested as type int,
assuming that a reasonable machine would be able to access a variable of that
type atomically, but ANSI C does not guarantee that.

36 The ANSI C Standard, Section 7.7.

37 These functions are listed in this document in Figure 86 on page 156.
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

volatile sig_atomic_t stop_requested = 0;

void sig_handler (int signo)
{

stop_requested = 1;
return;

}

int main(int argc, char **argv)
{

struct sigaction sa;

sa.sa_handler = sig_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;

(void) sigaction(SIGTERM, &sa, NULL);

while (stop_requested == 0) {
fputs(″Process is still running.\n″ ,  stdout);
sleep(10);

}
fputs(″Process is terminating.\n″ ,  stdout);

return 0;
}

Figure 83. Example of a Typical Use of a sig_atomic_t Variable

If a global variable of a type other than sig_atomic_t is modified within a signal
handler and accessed elsewhere, and it is important that the program not see an
intermediate value, access to the variable should be synchronized in some
manner. Using sigprocmask to temporarily block signals while accessing the
variable outside of the signal handler is a valid approach.

7.2.1 A Problem with sig_atomic_t on AIX
If the ANSI language level of the C compiler is used on AIX to compile the
program in Figure 83, the compiler will generate an error message. If the
extended language level of the C compiler is used, the program will just
generate a warning message. If the program in Figure 83 is in a source file
named atomic.c, Figure 84 on page 152 shows the results of attempts to
compile the program. The first attempt to compile the program specifies that the
ANSI level of the compiler should be used (-qlanglvl=ansi is specified). The
compilation fails with an error. The second attempt to compile the program
specifies that the extended level of the compiler should be used
(-qlanglvl=extended is specified). The compilation succeeds, but a warning
message is generated.
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$ xlc -D_ALL_SOURCE -o atomic atomic.c -qlanglvl=ansi -qhalt=e
″atomic.c″ ,  line 7.17: 1506-112 (E) Duplicate type qualifier volatile ignored.
$ echo $?
1
$ ls -l atomic
atomic not found
$
$ xlc -D_ALL_SOURCE -o atomic atomic.c -qlanglvl=extended -qhalt=e
″atomic.c″ ,  line 7.17: 1506-112 (W) Duplicate type qualifier volatile ignored.
$ echo $?
0
$ ls -l atomic
-rwxr-xr-x 1 agar staff 3961 May 2 16:46 atomic

Figure 84. AIX Problem with sig_atomic_t Type

The problem in AIX with variables declared to be of type volatile sig_atomic_t
occurs as a result of how sig_atomic_t is defined in AIX. The details are
described in a defect opened against AIX. The text of that defect follows:

SUMMARY

On AIX, in <sys/signal.h>, the type sig_atomic_t is defined as

typedef volatile int sig_atomic_t;

The inclusion of the type qualifier “volatile” in the definition of
sig_atomic_t violates the ANSI C standard. The problem can be fixed by
defining sig_atomic_t as:

typedef int sig_atomic_t;

RATIONALE

In “Section 7.7.1.1 The signal function” of the ANSI C standard, the
following paragraph appears:

“If the signal occurs other than as the result of calling the abort or raise
function, the behavior is undefined if the signal handler calls any function
in the standard library other than the signal function itself . . . or refers
to any object with static storage duration other than by assigning a value
to a static storage duration variable of type volatile sig_atomic_t. . . . ”

This paragraph indicates that a program that is to modify a variable of
static storage duration within a signal handler should define the variable
with the type ″volatile sig_atomic_t″ . A variable “var” should be
defined as:

static volatile sig_atomic_t var;

On an AIX system, because of how sig_atomic_t is defined, this is
comparable to:

152 Writing Reliable AIX Daemons 



static volatile volatile int var;

However this definition is invalid, according to the ANSI C standard. The
standard states in “Section 6.5.3 Type qualifiers”: “The same type
qualifier shall not appear more than once in the same specifier list or
qualifier list, either directly or via one or more typedefs.” So, the
definition that is required in section 7.7.1.1, is invalid on an AIX system
because of the constraint placed on type qualifiers in section 6.5.3. If the
“ volatile” type qualifier is removed from the definition of sig_atomic_t in
<sys/signal.h> on AIX, the definition that is required by section 7.7.1.1
will be valid on an AIX system.

 EXAMPLES

Here is some code in a source file x.c:

#include <signal.h>

static volatile sig_atomic_t var;

int main(int argc, char **argv)
{

return 0;
}

 Here is an attempt to compile this code failing:

$ xlc -D_ANSI_C_SOURCE -o x x.c -qlanglvl=ansi -qhalt=e
″x.c″ ,  line 3.17: 1506-112 (E) Duplicate type qualifier volatile ignored.
$ echo $?
1

 Here is source code in a file x2.c,
 that defines sig_atomic_t without volatile:

typedef int sig_atomic_t;

static volatile sig_atomic_t var;

int main(int argc, char **argv)
{

return 0;
}

 The code can be compiled:

$ xlc -D_ANSI_C_SOURCE -o x2 x2.c -qlanglvl=ansi -qhalt=e
$ echo $?
0

 AIX VERSION

Found on AIX 4.1.2, and AIX 3.2.5.
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The response to this defect is that the problem is real, but it will not be fixed
now, because it may cause existing code to fail.

7.3 Signal Handlers and Critical Sections
It may not be safe for a signal handler to be called at any time. For example, a
program may manipulate global data more complicated than sig_atomic_t data
within and outside of signal handlers. It may not be safe to allow a signal
handler to execute when the program is in the middle of manipulating the global
data. A program can control when a signal handler is allowed to execute by
manipulating the process signal mask. This can be done with the sigprocmask
routine. When the program is in a critical section which is manipulating the
global data, signal handlers that will manipulate the same data should be
blocked from execution.

A signal is said to be generated when the event that causes the signal occurs.
When action is taken by a process in response to the signal, like terminating or
executing a signal handler, the signal is said to be delivered. Between the time
that a signal is generated and delivered, the signal is said to be pending. A
signal does not stay pending for long, unless it is blocked. A blocked signal that
is pending remains pending until the signal is unblocked and delivered, or until
the signal disposition is changed such that it is ignored. A signal is blocked and
unblocked with the sigprocmask routine. A signal can also be blocked when a
signal handler is executed. The signals that are blocked when a signal handler
is executing are specified when the signal handler is installed. It should be
noted that when a signal is generated for a process multiple times while the
signal is blocked by the process, it is up to the system implementation to decide
whether the signal is delivered multiple times when the signal is unblocked. A
portable application should not assume the signal will be delivered once, nor
should it assume the signal will be delivered more than once.

Figure 85 on page 155 presents an example. The example assumes that the
main routine and the signal handlers for the SIGUSR1 and SIGUSR2 signals will
manipulate a global linked list. Manipulating a linked list typically involves
several steps that must be performed without interruption. If the manipulation of
a linked list is interrupted, the linked list may become corrupted. The example
protects the linked list in two ways. First, when the signal handlers are installed,
the sa_mask field of the sigaction structure is set such that the SIGUSR1 and
SIGUSR2 signal handlers cannot execute concurrently. When the SIGUSR1 or
SIGUSR2 signal handler is executing, the SIGUSR1 and SIGUSR2 signals will be
blocked. Second, before the non-signal handling code manipulates the global
linked list, it sets the process signal mask such that the SIGUSR1 and SIGUSR2
signals are blocked. Once the linked list has been manipulated, the signal mask
is reset to its previous value.
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#include <unistd.h>
#include <stdlib.h>
#include <signal.h>

void usr1_handler(int signo)
{

/* ... Examine or manipulate the global linked list ... */
return;

}

void usr2_handler(int signo)
{

/* ... Examine or manipulate the global linked list ... */
return;

}

int main(int argc, char **argv)
{

struct sigaction sa;
sigset_t crit_mask, saved_mask;

(void) sigemptyset(&crit_mask);
(void) sigaddset(&crit_mask, SIGUSR1);
(void) sigaddset(&crit_mask, SIGUSR2);

sigemptyset(&sa.sa_mask);
(void) sigaddset(&sa.sa_mask, SIGUSR1);
(void) sigaddset(&sa.sa_mask, SIGUSR2);
sa.sa_flags = SA_RESTART;

sa.sa_handler = usr1_handler;
(void) sigaction(SIGUSR1, &sa, NULL);
sa.sa_handler = usr2_handler;
(void) sigaction(SIGUSR2, &sa, NULL);

.

.

.
(void) sigprocmask(SIG_BLOCK, &crit_mask, &saved_mask);
/* ... Manipulate the global linked list ... */
(void) sigprocmask(SIG_SETMASK, &saved_mask, NULL);
.
.
.

return 0;
}

Figure 85. Protecting Critical Sections

A program may also have to manipulate the process signal mask because of the
routines being used by the signal handlers and the non-signal handling code.
See 7.4, “Signal Handlers and Signal-Safe Routines” on page 156.

Chapter 7. Signal Handling 155



7.4 Signal Handlers and Signal-Safe Routines
It should not be assumed that it is safe to call any routine from a signal handling
routine. In fact, most routines are probably unsafe to call from a signal handling
routine. Routines tend to be unsafe to call from a signal handling routine
because signals can be delivered at any time, unless blocked by the process
signal mask, and many routines are not reentrant. For example, a routine may
use static data to hold intermediate results. If such a routine is interrupted by
the execution of a signal handler that calls the routine again, one or both
executions of the routine may not behave as expected. Many routines
manipulate global data. If such a routine is interrupted by the execution of a
signal handler that calls any other routine that manipulates the same global
data, unexpected results may occur.

7.4.1 The Official Signal-Safe Routines
The POSIX 1003.1 and X/OPEN standards define sets of system routines that
compliant systems must implement in a reentrant fashion or in such a way that
they are not interruptible by the delivery of signals. The routines in the set can
safely be called from signal handling routines, without restriction. The set of
routines specified by POSIX 1003.1 is shown in Figure 86. The XPG3 standard
adds abort, chroot, exit, and longjmp to this set. However, those four routines
are not listed as safe by the XPG4 standard, so they should probably be avoided.
The XPG4 standard adds the fpathconf and raise routines to the POSIX 1003.1
set of signal-safe routines.

access getegid rmdir tcflow
alarm geteuid setgid tcflush
cfgetispeed getgid setpgid tcgetattr
cfgetospeed getgroups setsid tcgetprgp
cfsetispeed getpgrp setuid tcsendbreak
cfsetospeed getpid sigaction tcsetattr
chdir getppid sigaddset tcsetpgrp
chmod getuid sigdelset time
chown kill sigemptyset times
close link sigfillset umask
creat lseek sigismember uname
dup2 mkdir signal unlink
dup mkfifo sigpending ustat
execle open sigprocmask utime
execve pathconf sigsuspend wait
_exit pause sleep waitpid
fcntl pipe stat write
fork read sysconf
fstat rename tcdrain

Figure 86. Signal-Safe Routines As Specified by POSIX 1003.1

An application routine can be implemented to be safe with respect to signals, if it
is implemented in a reentrant fashion, or such that it is not interruptible by the
delivery of a signal. If the application routine is interruptible by signals, it must
restrict its calls to system routines to the defined set of signal-safe system
routines.
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The standards state that if any routine that is unsafe with respect to signals is
interrupted by a signal handler routine that then calls any unsafe routine, the
results are undefined. The program is not guaranteed to work as expected, and
the results may vary from system to system. Any problems that arise are likely
to be intermittent, and may terminate the process. A program can protect itself
from these types of problems with either of the following approaches:

• Signal handler routines can be implemented such that they only call routines
that are safe with respect to signals.

• The program can insure that an unsafe routine is never interrupted by the
execution of a signal handling routine. This may involve blocking the
delivery of signals, or the use of some other program synchronization.

Notice that the standard I/O routines, and the malloc and free routines are not in
the set of signal-safe routines in Figure 86 on page 156. These routines typically
manipulate global data. The malloc and free routines manipulate the process
heap. The standard I/O routines manipulate global buffers. Many routines are
unsafe with respect to signal handling because they call malloc and free. The
standard I/O routines call malloc and free, which is another reason they are
unsafe with respect to signals. For examples showing the unsafe nature of these
routines with respect to signal handlers, see 7.4.4, “Examples of Using
Signal-Unsafe Routines” on page 158.

7.4.2 Other Signal-Safe Routines
The limited number of routines defined to be signal-safe by POSIX and X/OPEN
can be frustrating. An actual UNIX implementation probably has many other
system routines that can be considered signal-safe. The possibilities are
discussed in this section. However, counting on a system routine to be
signal-safe that is not defined to be so by a standard can lead to porting
difficulties.

Routines that are known to be signal-unsafe are so because of the way they
treat data of static duration in user level. Most of the routines defined as
signal-safe by POSIX and X/OPEN are typically implemented as system calls.
One could reasonably expect that a system would not implement a system call
such that it dealt with static user level data in a fashion that would make the
system call signal-unsafe. Therefore, it would be reasonable to treat any system
routine implemented as a system call on a particular system as signal-safe on
that system.

Take, for example, the select routine. The select routine is defined as part of
XPG4 UNIX Conformance. Yet, it is not included in the set of signal-safe
routines. On AIX, the select routine is a system call. It would be reasonable to
treat select as a signal-safe function on AIX. However, there is no guarantee
that select is implemented as a system call on another system claiming XPG4
UNIX Conformance.

A system like AIX includes many system routines that are not included in any
standard. An obvious example is the set of socket routines. The socket, bind,
listen, accept, and connect routines are implemented on AIX as system calls. It
seems reasonable to treat these routines as signal-safe on AIX.
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7.4.3 Long Jumping and Signal-Safe Routines
The siglongjmp routine is not included in the set of signal-safe routines by POSIX
or X/OPEN. Yet, siglongjmp is a valid way to terminate the execution of a signal
handler. The reason it is not included in the set of signal-safe routines is that
the program may execute signal-unsafe routines after the long jump is made.
Since the execution of the signal handler may have interrupted a signal-unsafe
routine, the results of the execution of another signal-unsafe routine after the
long jump is undefined. It is as if the signal handler had interrupted a
signal-unsafe routine and then executed another signal-unsafe routine.

It is valid to leave a signal handler with siglongjmp if the program takes the
necessary steps to ensure that the signal handler will not interrupt the execution
of a signal-unsafe routine. An example of this is given in 7.9, “Doing the Right
Thing with Signals” on page 184. It is also valid to leave a signal handler with
siglongjmp if the program takes the necessary steps to ensure that once the
siglongjmp routine has been called, the program will not execute a signal-unsafe
routine.

The use of siglongjmp to leave a signal handler is preferred to the use of longjmp
or _longjmp, because of the differences in how these routines treat the process
signal mask. The XPG4 standard specifies that the _longjmp routine does not
affect the process signal mask. When _longjmp is used to long jump, the process
signal mask remains as it was in the signal handler. The XPG4 standard
indicates that it is unspecified whether the longjmp call leaves the process signal
mask unchanged, or restores the process signal mask to the value it had when
setjmp was called. The XPG4 standard requires that siglongjmp restore the
process signal mask to the value it had when sigsetjmp was called, if the
sigsetjmp call indicated the state of the process signal mask should be saved.
That is usually the desired behavior.

7.4.4 Examples of Using Signal-Unsafe Routines
The absence of the standard I/O routines and the memory allocation routines
from the set of signal-safe routines cannot be overemphasized. It is often
natural to want to call the standard I/O routines in a signal handler, or to free or
allocate memory in the signal handler. However, this can lead to an unreliable
program, if not done carefully. Several examples are shown to illustrate the
unsafe nature of these routines with respect to signal handling.

Figure 87 on page 159 shows the source code for a program called malloc_test.
The main routine installs the catch routine as the signal handler for the SIGUSR1
signal. It then executes a loop that calls the malloc routine to allocate memory,
and calls the free routine to free the memory. When the process running
malloc_test is sent the SIGUSR1 signal, the catch routine will call the malloc
routine to allocate memory, and it will call the free routine to free the memory
allocated. Since the malloc and free routines are not considered signal-safe, the
routines are called in a signal handler, and the delivery of the SIGUSR1 signal can
interrupt the execution of the calls to malloc and free in the main routine; this
program is not guaranteed to work. Figure 88 on page 160 shows the
malloc_test program failing on an AIX 4.1.2 system. The program is started, and
the process running the program is sent the SIGUSR1 signal several times. After
the signal is sent a few times, the program terminates with a memory fault. It is
likely that the global data malloc and free use to keep track of the state of the
process heap became corrupted.
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void catch(int signo)
{

char *ptr;

ptr = malloc(2000);

if (ptr == NULL) {
_exit(2);

}

free(ptr);
return;

}

int main(int argc, char **argv)
{

char *ptr;
struct sigaction sa;

sa.sa_handler = catch;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;

if (sigaction(SIGUSR1, &sa, NULL) == -1) {
exit(3);

}

while (1 == 1) {

ptr = malloc(2000);

if (ptr == NULL) {
exit(1);

}

free(ptr);

}

return 0;
}

Figure 87. Source Code for the malloc_test Program
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$ ./malloc_test &
[1] 6728

$ kill -USR1 6728
$ kill -USR1 6728
$ kill -USR1 6728
$ kill -USR1 6728
$ kill -USR1 6728
$ kill -USR1 6728
[1] + Memory fault(coredump) ./malloc_test &
$

Figure 88. Running the malloc_test Program

Figure 89 on page 161 shows the source code for a program called print_test.
The structure of this program is similar to the malloc_test program of Figure 87
on page 159: the main routine installs a signal handler for SIGUSR1, and the main
routine and the signal handler both call a routine that is not signal-safe, in this
case the fprintf routine. Since fprintf is not a signal-safe routine, this program
is not guaranteed to work. Figure 90 on page 162 shows the print_test
program failing on an AIX 4.1.2 system. The program is executed twice. Both
times, the program is started, and the process running the program is
bombarded with the SIGUSR1 signal. After about five seconds of this
bombardment, the process terminates with a memory fault. The first time the
print_test program is run, the standard output stream is buffered by default.
The second time the program is run, the standard output stream is unbuffered.
The program fails regardless of the buffering state of standard output.

160 Writing Reliable AIX Daemons 



#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void catch(int signo)
{

fprintf(stdout,
″It′ s fine handling signal %2$d in process %1$d.\n″ ,
getpid(), signo);

return;
}

int main(int argc, char **argv)
{

struct sigaction sa;

sa.sa_handler = catch;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;

if (sigaction(SIGUSR1, &sa, NULL) == -1) {
exit(1);

}

if ((argc > 1) && (strcmp(argv[1], ″-u″) == 0)) {
setbuf(stdout, NULL);

}

/*
* Prevent the program from generating output until the first signal
* arrives. This gives the user a chance to type in a command to
* start sending SIGUSR1 signals to the process.
*/
(void) sigsuspend(0);

while (1 == 1) {
fprintf(stdout, ″It′ s fine being in the %2$s ″

″of process %1$d.\n″ ,  getpid(), ″mainline″ ) ;
}

return 0;
}

Figure 89. Source Code for the print_test Program
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$ ./print_test &
[1] 9396

$ while true; do kill -USR1 9396; done
.
.
.

It′ s fine being in the mainline of process 9396.
It′ s fine being in the mainline of process 9396.
It′ s fiIt′ s fine handling signal 30 in process 9396.
ne being in the mainline of process 9396.
It′ s fine being in the mainlIt′ s fine handling signal 30 in process 9396.
ine of process 9396.
It′ s fine being in the mainline of process 9396.
It′ s fine handling signal 30 in process 9396.
It′ s fine being in the mainline of process 9396.
It′ s fine being in the mainline of process 9396.
It′ s fine being in the mainline of process 9396.
It′ s fine being in the mainline of process 9396.
It′ s fine being in the It′ s fine handling signal 30 in process 9396.
It′ s fine handling signal 30 in process 9396.

[1] + Memory fault(coredump) ./print_test &

$ ./print_test -u &
[1] 9088

$ while true; do kill -USR1 9088; done
.
.
.

It′ s fine handling signal 30 in process 9088.
It′ s fine handling signal 30 in process 9088.
It′ s fine being in the mainline of process 9088.
It′ s fine being in the mainline of process 9088.
It′ s fine being in the mainline of process 9088.
It′ s fine being in the It′ s fine handling signal 30 in process 9088.
It′ s fine handling signal 30 in process 9088.
mainline of process 9088.
It′ s fine being in the mainline of process 9088.
It′ s fine being in the It′ s fine handling signal 30 in process 9088.
It′ s fine handling signal 30 in process 9088.

[1] + Memory fault(coredump) ./print_test -u &

Figure 90. Running the print_test Program

Figure 91 on page 163 shows the source code for a program called print_test2.
This program is a modification of print_test. It performs the same function as
print_test, but is implemented to take into account the fact that fprintf is not a
signal-safe routine. The main routine uses the sigprocmask routine to prevent the
delivery of the SIGUSR1 signal while fprintf is executing. As a result, the catch
signal handler never interrupts the fprintf routine. Whenever the fprintf
routine is called from the catch routine, any previous call to fprintf is already
completed. Figure 92 on page 164 shows the results of running the print_test2
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program, and bombarding the process running the program with the SIGUSR1
signal. Notice that the lines printed by the main routine and the catch routine are
not mixed up, in contrast to the previous examples. The print_test2 program
continues to run until terminated with some other signal.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void catch(int signo)
{

fprintf(stdout,
″It′ s fine handling signal %2$d in process %1$d.\n″ ,
getpid(), signo);

return;
}

int main(int argc, char **argv)
{

struct sigaction sa;
sigset_t block_mask, save_mask;

sa.sa_handler = catch;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;

if (sigaction(SIGUSR1, &sa, NULL) == -1) {
exit(1);

}

if ((argc > 1) && (strcmp(argv[1], ″-u″) == 0)) {
setbuf(stdout, NULL);

}

(void) sigsuspend(0);
(void) sigemptyset(&block_mask);
(void) sigaddset(&block_mask, SIGUSR1);

while (1 == 1) {
(void) sigprocmask(SIG_BLOCK, &block_mask, &save_mask);
fprintf(stdout, ″It′ s fine being in the %2$s ″

″of process %1$d.\n″ ,  getpid(), ″mainline″ ) ;
(void) sigprocmask(SIG_SETMASK, &save_mask, NULL);

}

return 0;
}

Figure 91. Source Code for the print_test2 Program
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$ ./print_test2 &
[1] 10974

$ while true; do kill -USR1 10974; done
.
.
.

It′ s fine being in the mainline of process 10974.
It′ s fine handling signal 30 in process 10974.
It′ s fine being in the mainline of process 10974.
It′ s fine being in the mainline of process 10974.
It′ s fine being in the mainline of process 10974.
It′ s fine being in the mainline of process 10974.
It′ s fine being in the mainline of process 10974.
It′ s fine being in the mainline of process 10974.
It′ s fine being in the mainline of process 10974.
It′ s fine being in the mainline of process 10974.
It′ s fine being in the mainline of process 10974.
It′ s fine being in the mainline of process 10974.
It′ s fine being in the mainline of process 10974.
It′ s fine handling signal 30 in process 10974.
It′ s fine being in the mainline of process 10974.
It′ s fine being in the mainline of process 10974.

.

.

.

Figure 92. Running the print_test2 Program

Of course, an alternative to using the standard I/O routines in a signal handler is
to use the open, read, write, lseek, and close system calls. These system calls
are in the set of signal-safe routines. Figure 93 on page 165 shows the
print_test3 program, which uses the write system call instead of the fprintf
routine. This program behaves correctly, even though the SIGUSR1 signal is
never explicitly blocked. Figure 94 on page 166 shows the results of running
print_test3.
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

char main_msg[80];
int main_msg_len;
char catch_msg[80];
int catch_msg_len;

void catch(int signo)
{

write(STDOUT_FILENO, catch_msg, catch_msg_len);
return;

}

int main(int argc, char **argv)
{

struct sigaction sa;

main_msg_len = sprintf(main_msg,
″It′ s fine being in the %2$s of process %1$d.\n″ ,
getpid(), ″mainline″ ) ;

catch_msg_len = sprintf(catch_msg,
″It′ s fine handling signal %2$d in process %1$d.\n″ ,
getpid(), SIGUSR1);

sa.sa_handler = catch;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;

if (sigaction(SIGUSR1, &sa, NULL) == -1) {
exit(1);

}

(void) sigsuspend(0);

while (1 == 1) {
write(STDOUT_FILENO, main_msg, main_msg_len);

}

return 0;
}

Figure 93. Source Code for the print_test3 Routine
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$ ./print_test3 &
[1] 10798

$ while true; do kill -USR1 10798; done
.
.
.

It′ s fine being in the mainline of process 10798.
It′ s fine being in the mainline of process 10798.
It′ s fine being in the mainline of process 10798.
It′ s fine being in the mainline of process 10798.
It′ s fine handling signal 30 in process 10798.
It′ s fine handling signal 30 in process 10798.
It′ s fine being in the mainline of process 10798.
It′ s fine being in the mainline of process 10798.
It′ s fine being in the mainline of process 10798.
It′ s fine being in the mainline of process 10798.
It′ s fine being in the mainline of process 10798.
It′ s fine being in the mainline of process 10798.
It′ s fine being in the mainline of process 10798.
It′ s fine being in the mainline of process 10798.
It′ s fine being in the mainline of process 10798.

.

.

.

.

Figure 94. Running the print_test3 Program

Figure 95 on page 167 shows the source code for a program called
print_malloc_test. This program illustrates two points. First, two signal-unsafe
routines that may seem unrelated, fprintf and malloc in this case, may interfere
with each other when signal handlers are executed. Second, the execution of
one signal handler may be interrupted by another signal handler. In this
program, the main routine does not call any signal-unsafe routine. The signal
handler catch1 calls the fprintf routine, and the signal handler catch2 calls the
malloc routine. When catch1 is running, a SIGUSR2 signal may arrive that will
interrupt catch1 and cause catch2 to start running. Similarly, when catch2 is
running, a SIGUSR1 signal may arrive that will interrupt catch2 and cause catch1
to start running. Since these signal handlers can interrupt each other and they
call signal-unsafe routines, this program is not guaranteed to work. Figure 96
on page 168 shows that the program terminates with a memory fault when it is
bombarded with the SIGUSR1 and SIGUSR2 signals.
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void catch1(int signo)
{

fprintf(stdout, ″It′ s fine handling signal %2$d in process %1$d.\n″ ,
getpid(), signo);

return;
}

void catch2(int signo)
{

char *ptr;
char buf[] = ″Caught SIGUSR2.\n″ ;

write(STDOUT_FILENO, buf, sizeof buf - 1);
if ((ptr = malloc(2000)) == NULL)

_exit(2);
free(ptr);
return;

}

int main(int argc, char **argv)
{

struct sigaction sa;

sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;

sa.sa_handler = catch1;
if (sigaction(SIGUSR1, &sa, NULL) == -1) {

exit(1);
}

sa.sa_handler = catch2;
if (sigaction(SIGUSR2, &sa, NULL) == -1) {

exit(1);
}

while (1 == 1) {
sleep(60);

}

return 0;
}

Figure 95. Source Code for print_malloc_test Program
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$ ./print_malloc_test &
[1] 10836

$ while true; do kill -USR1 10836; kill -USR2 10836; done
.
.
.

It′ s fine handling signal 30 in process 10836.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 10836.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 10836.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 10836.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 10836.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 10836.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 10836.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 10836.
Caught SIGUSR2.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 10836.
Caught SIGUSR2.
Caught SIGUSR2.
Caught SIGUSR2.
[1] + Memory fault(coredump) ./print_malloc_test &

Figure 96. Running the print_malloc_test Program

Figure 97 on page 169 shows the source code for a program called
print_malloc_test2. It is a modification of print_malloc_test. When the signal
handlers for SIGUSR1 and SIGUSR2 are installed, the signal mask specified masks
off the two signals. As a result, when either the catch1 or catch2 signal handler
is running, the SIGUSR1 and SIGUSR2 signals are blocked. Therefore, the signal
handlers cannot interrupt each other. This program runs correctly, as illustrated
in Figure 98 on page 170.
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void catch1(int signo)
{

fprintf(stdout, ″It′ s fine handling signal %2$d in process %1$d.\n″ ,
getpid(), signo);

return;
}

void catch2(int signo)
{

char *ptr;
char buf[] = ″Caught SIGUSR2.\n″ ;

write(STDOUT_FILENO, buf, sizeof buf - 1);
if ((ptr = malloc(2000)) == NULL)

_exit(2);
free(ptr);
return;

}

int main(int argc, char **argv)
{

struct sigaction sa;

sigemptyset(&sa.sa_mask);
sigaddset(&sa.sa_mask, SIGUSR1);
sigaddset(&sa.sa_mask, SIGUSR2);
sa.sa_flags = SA_RESTART;

sa.sa_handler = catch1;
if (sigaction(SIGUSR1, &sa, NULL) == -1) {

exit(1);
}

sa.sa_handler = catch2;
if (sigaction(SIGUSR2, &sa, NULL) == -1) {

exit(1);
}

while (1 == 1) sleep(60);

return 0;
}

Figure 97. Source Code for print_malloc_test2 Program
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$ ./print_malloc_test2 &
[1] 9082
$ while true; do kill -USR1 9082; kill -USR2 9082; done

.

.

.

Caught SIGUSR2.
It′ s fine handling signal 30 in process 9082.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 9082.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 9082.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 9082.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 9082.
It′ s fine handling signal 30 in process 9082.
Caught SIGUSR2.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 9082.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 9082.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 9082.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 9082.
Caught SIGUSR2.
It′ s fine handling signal 30 in process 9082.

.

.

.

Figure 98. Running the print_malloc_test2 Program

7.5 Interrupted System Calls
Certain system calls are considered “slow.” A slow system call is one that is
waiting on an event that may never occur. For example, if a process has called
the read system call on a terminal device, the process may block if no data from
the terminal is currently available. There is no guarantee that any data will ever
be available to be read from the terminal, so the process may wait forever. A
“fast” system call is one that may wait for an event, but will not wait forever.
For example, a read from a disk device is usually considered to be a fast system
call. A read from a disk is expected to complete in a finite amount of time38, or
at least, report an error in a finite amount of time.

38 If a system supports mandatory record locking, a read or write call to a region of a file that is locked may be treated as a
slow system call. AIX supports mandatory record locking for a fi le when its group execute permission bit is off and its
set-group-ID bit is on. See the fcntl man page.
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The execution of a signal handler may interrupt a slow system call. If a process
has installed a signal handler for a signal, and then blocks in a “slow” system
call, the installed signal handler will be executed if its associated signal is
delivered to the process. If the signal handler returns, the slow system call will
return, indicating an error39, and the errno variable will be set to EINTR. The
program may react to the delivery of the signal, if the signal handler left some
indication that the signal was delivered; the program may restart the interrupted
system call by calling it again. For example, in Figure 99, the wait routine is
being called to wait for the termination of a child process. Since the wait system
call is considered a slow system call, the routine is called again if it returns -1
and the errno variable is set to EINTR.

#include <sys/types.h>
#include <sys/wait.h>

.

.

.

pid_t child_pid;
int child_status;

.

.

.

do {
child_pid = wait(&child_status);

} while ( (child_pid == (pid_t)-1) && (errno == EINTR) );

.

.

.

Figure 99. Dealing with an Interrupted Call to the wait Routine

When coding to account for the possible interruption of a slow system call, the
documentation of the routine should be referenced to determine how to recover
from the interruption. The recovery may not always be as simple as the code in
Figure 99 for the wait routine. For example, if a read or write system call is
interrupted by a signal, an error indication is not always returned. If some I/O
took place before the interruption, the read or write routine must report the
number of bytes that were read or written. This may be fewer than the number
requested. This condition should not be considered an error by the program.
The program should adjust its buffer pointer and count of bytes to be read or
written by the number of bytes returned, and call the read or write routine again
to continue the I/O. This technique is illustrated in Figure 100 on page 173 and
Figure 101 on page 174. Figure 100 on page 173 shows the source code for a
routine called writen. The writen routine has the same interface as the write
routine, and serves as an interface to the write routine. The writen routine deals

39 The return value indicating an error depends on the routine. Typical error values are -1 for a routine returning an integral
value and NULL for a routine returning a pointer. Certain routines may not always return an error, as discussed in the next
paragraph.
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with the write routine being interrupted by a signal handler. If -1 is returned by
write and errno is EINTR, writen calls write again with the same arguments. If
the write routine writes fewer bytes than requested, the writen routine adjusts
the buffer pointer, buf_ptr, and the number of bytes to write, todo_size, before
calling write again. The readn routine in Figure 101 on page 174 deals with
interrupted read calls in much the same way40.

40 Even if a program has not installed signal handlers, routines like readn and writen are useful when performing I/O on file types
that are defined as possibly reading or writing fewer bytes than requested in non-error situations. Examples of such fi le
types are pipes and stream sockets. Similar routines are suggested in UNIX Network Programming, W. Richard Stevens,
1990, Prentice Hall, Englewood Cliffs.
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#include <unistd.h>
#include <stdlib.h>
#include <errno.h>

/*
 * The writen() routine writes up to ″reqsize″ bytes to file descriptor
 * ″fd″ from buffer ″buf″ . It returns the number of bytes successfully
* written. A return of -1 indicates an error.
*/

int writen(int fd, char *buf, int reqsize)
{

int todo_size;
int actual_size;
int written_size;
char *buf_ptr;
int saved_errno;

saved_errno = errno;
actual_size = 0;
todo_size = reqsize;
buf_ptr = buf;

while (todo_size > 0) {

if ((written_size = write(fd, buf_ptr, todo_size)) == -1) {
if (errno == EINTR) {

continue;
}
return -1;

}

if (written_size == 0) {
break;

}

actual_size += written_size;
todo_size -= written_size;
buf_ptr += written_size;

}

errno = saved_errno;
return actual_size;

}

Figure 100. Source Code for the writen Routine
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#include <unistd.h>
#include <stdlib.h>
#include <errno.h>

/*
 * The readn() routine reads up to ″reqsize″ bytes from file descriptor
 * ″fd″ into buffer ″buf″ . It returns the number of bytes successfully
* read. A return of -1 indicates an error.
*/

int readn(int fd, char *buf, int reqsize)
{

int todo_size;
int actual_size;
int read_size;
char *buf_ptr;
int saved_errno;

saved_errno = errno;
actual_size = 0;
todo_size = reqsize;
buf_ptr = buf;

while (todo_size > 0) {

if ((read_size = read(fd, buf_ptr, todo_size)) == -1) {
if (errno == EINTR) {

continue;
}
return -1;

}

if (read_size == 0) {
break;

}

actual_size += read_size;
todo_size -= read_size;
buf_ptr += read_size;

}

errno = saved_errno;
return actual_size;

}

Figure 101. Source Code for the readn Routine

The author of this document has never seen a comprehensive list of slow system
calls. However, reads and writes to pipes, terminal devices, and network
devices; opens of terminal devices associated with a modem; pause; wait; certain
ioctl operations; and IPC routines are mentioned in Advanced Programming in
the UNIX Environment, W. Richard Stevens, 1992, Addison-Wesley Publishing
Company.
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It should be noted that many system routines that are not system calls make
calls to one or more system calls, and therefore, might be interrupted by a
signal handler. The standard I/O routines are good examples. Routines like
scanf and printf ultimately call read or write. When read or write are
interrupted, the standard I/O routines do not call read or write again. If read or
write returns -1, and errno is set to EINTR, the standard I/O routines just return
and let the caller deal with it. As will be shown in 7.7, “Standard I/O and Signal
Handlers” on page 178, the caller cannot always deal with the problem
effectively. Figure 102 lists the routines documented by XPG4 Issue 2 as
possibly returning with errno set to EINTR.

 catclose fputwc getwc scanf
 catgets fputws getwchar select

chmod fread ioctl semop
chown freopen lchown sigpause
close fscanf lockf sigsuspend

 closedir fseek msgrcv sleep
 creat fstatvfs msgsend statvfs

dup2 fsync open tcdrain
fchdir ftruncate pause tcsetattr
fchmod fwrite poll tmpfile
fchown getc printf truncate
fclose getchar putc vfprintf
fcntl getgrent putchar vprintf
fflush getgrgid putmsg wait
fgetc getgrnam putpmsg wait3
fgets getmsg puts waitid
fgetwc getpass putw waitpid
fgetws getpmsg putwc write
fopen getpwnam putwchar writev
fprintf getpwuid read
fputc gets readv
fputs getw rewind

Figure 102. Routines That May Be Interrupted by a Signal Handler (XPG4, Issue 2)

The list in Figure 102 cannot be considered a comprehensive list of routines that
can be interrupted by a signal handler on AIX. Additional routines that are in
AIX, but not part of the XPG4 standard, can be interrupted. For example, these
socket routines can be interrupted by signal handlers: accept, connect, recv,
recvfrom, send, sendmsg, and sendto.

7.6 Automatic Restart of Interrupted System Calls
It can be cumbersome to put routines that can be interrupted by signal handlers
into loops checking for the EINTR errno value. To alleviate the problem, some
system calls are classified as restartable. This means that some interruptible
system calls can be restarted automatically by the system. When a system call
is automatically restarted, the system call behaves correctly and the caller does
not see any indication that the system call had been interrupted. The system
calls that are restartable according to the AIX 4.1 documentation are listed in
Figure 103 on page 176.
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fcntl lockf readx write
flock read wait writev
ioctl readv wait3 writevx
ioctlx readvx waitpid writex

Figure 103. Restartable System Calls in AIX 4.1

A system routine that is interruptible because it calls an interruptible system call
can be considered restartable if the system call is restartable. For example, the
standard I/O routines in Figure 104 are restartable because read and write are
restartable.

fclose fputs getchar puts
fflush fputwc gets putw
fgetc fputws getw putwc
fgets fread getwc putwchar
fgetwc fscanf getwchar rewind
fgetws fseek printf scanf
fprintf fwrite putc vfprintf
fputc getc putchar vprintf

Figure 104. Restartable Standard I/O Routines

Whether or not a restartable system call is automatically restarted when
interrupted by the execution of a signal handler depends on how the signal
handler was installed for the signal that caused the signal handler to execute.
The sigaction structure contains a field called sa_flags that is used to modify the
effect of the sigaction call. On System V systems, AIX, and systems supporting
XPG4 UNIX Conformance, the SA_RESTART flag can be set in sa_flags to specify
that when the signal handler being installed interrupts a restartable system call
due to the delivery of the signal specified, the system call is to be automatically
restarted.

Figure 105 on page 177 shows an example to illustrate the effect of SA_RESTART.
The example installs a signal handler for the SIGUSR1 and SIGUSR2 signals. The
signal handler installed for both signals is the catch routine. However,
SA_RESTART is specified when catch is installed for SIGUSR1, and it is not specified
when catch is installed for SIGUSR2. The example then calls readn (see
Figure 101 on page 174) to read data from standard input and writen (see
Figure 100 on page 173) to write the data to standard output. Data is read and
written until the end of the input is reached, or an error occurs. Recall that readn
internally calls read, and writen internally calls write. If the read routine returns
an error with errno set to EINTR, the readn routine just calls read again. The
writen routine provides similar processing for write.

In the program in Figure 105 on page 177, the delivery of the SIGUSR2 signal may
cause read and write to return -1, with errno set to EINTR. In this case, the logic
in readn and writen that makes the system call again is needed. The delivery of
SIGUSR1 will not cause read and write to return -1, with errno set to EINTR. When
SIGUSR1 is delivered, if the read or write system call is interrupted without having
read or written any data, the system call is automatically restarted; the logic in
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readn and writen that checks for EINTR is not needed, but it is harmless, in this
case.

#include <unistd.h>
#include <stdlib.h>
#include <signal.h>

int readn(int fd, char *buf, int reqsize);
int writen(int fd, char *buf, int reqsize);

void catch(int signo)
{

return;
}

int main(int argc, char **argv)
{

struct sigaction sa;
char buf[80];
int count;

sa.sa_handler = catch;
sigemptyset(&sa.sa_mask);

sa.sa_flags = SA_RESTART;
(void) sigaction(SIGUSR1, &sa, NULL);

sa.sa_flags = 0;
(void) sigaction(SIGUSR2, &sa, NULL);

while (1 == 1) {

if ((count = readn(STDIN_FILENO, buf, sizeof buf)) == -1) {
break;

}

if (count == 0) {
break;

}

if ((count = writen(STDOUT_FILENO, buf, count)) == -1) {
break;

}

}

return 0;
}

Figure 105. Installing a Signal Handler with and without the SA_RESTART Flag
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7.7 Standard I/O and Signal Handlers
Care should be taken when a program uses the standard I/O routines and
installs signal handlers. When signal handlers that will return are installed in a
program that uses the standard I/O routines, specify that restartable interrupted
system calls should be automatically restarted. This section provides an
example of why this should be done.

The prod_fputs program shown in Figure 106 on page 179 uses a loop of calls to
fputs to write data to standard output. The cons_fgets program shown in
Figure 107 on page 180 uses a loop of calls to fgets to read data from standard
input. In Figure 108 on page 181, the programs are run with the standard output
of prod_fputs piped to the standard input of cons_fgets. The prod_fputs program
installs a signal handler for the SIGUSR1 signal. The signal handler is installed
such that an interrupted system call will not automatically be restarted. The
prod_fputs program writes data in a pattern, and the cons_fgets program verifies
it is receiving the same pattern of data. The programs work until the SIGUSR1
signal is sent to prod_fputs. The program output indicates that the signal
handler for SIGUSR1 interrupted an attempt by fputs to write bytes containing the
value 231. It also reports the fputs routine returned an error, and errno was set
to EINTR. The prod_fputs program reacted to this by calling fputs again, which is
the proper reaction to a system call being interrupted. The call to fputs that
returned an error must have placed data in the standard I/O buffer before
returning, because the cons_fgets program reports that an unexpected number of
bytes were received with the value 231. If fputs can place bytes into the
standard I/O buffer, and not report the number of bytes placed in the buffer when
interrupted by the execution of a signal handler, then it cannot be used reliably
when interrupted by a signal handler.
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <signal.h>

#define FILLBUF if (val == 255) { val = 1; } else { val++; } \
memset(buf, val, sizeof buf); *(buf + sizeof buf - 1) = ′ \0′ ;

void sig_catch(int signo)
{

char msg[] = ″prod: caught SIGUSR1.\n″ ;

write(STDERR_FILENO, msg, sizeof msg - 1);
return;

}

int main(int argc, char **argv)
{

int val = 0, rc; char buf[2 * PIPE_BUF]; struct sigaction sa;

sa.sa_handler = SIG_IGN;
sigemptyset(&sa.sa_mask);
sa.sa_flags = (argc > 1) ? SA_RESTART : 0;
(void) sigaction(SIGPIPE, &sa, NULL);

sa.sa_handler = sig_catch;
(void) sigaction(SIGUSR1, &sa, NULL);

FILLBUF;

again:
while ((rc = fputs(buf, stdout)) != EOF) {

fprintf(stderr, ″prod: wrote %ld bytes of %d.\n″ ,  rc, val);
FILLBUF;

}

if (ferror(stdout) && errno == EINTR) {
fprintf(stderr, ″prod: EINTR error writing %d.\n″ ,  val);
clearerr(stdout);
goto again;

}

fprintf(stderr, ″prod: fputs(): %s\n″ ,  strerror(errno));
exit(1);

}

Figure 106. The prod_fputs Program
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>

int main(int argc, char **argv)
{

char buf[10000];
char value[2];
char *look_ptr;
int look_cnt;
int spn_cnt;
int match_cnt;

*value = ′ \01′ ; *(value + 1) = ′ \0′ ; match_cnt = 0;

while (fgets(buf, sizeof buf, stdin) != NULL) {

look_cnt = strlen(buf); look_ptr = buf;
while (look_cnt > 0) {

spn_cnt = strspn(look_ptr, value);
if (spn_cnt == 0) {

fprintf(stderr, ″cons: read %d bytes of %d.\n″ ,
match_cnt, *value);

if (match_cnt != (2 * PIPE_BUF - 1)) {
fprintf(stderr, ″cons: data error!\n″ ) ;
exit(1);

}
if (*value == ′ \377′ )  {

*value = ′ \01′ ;
} else {

*value += 1;
}
match_cnt = 0;

} else {
match_cnt += spn_cnt;
look_ptr += spn_cnt;
look_cnt -= spn_cnt;

}
}

}

fprintf(stderr, ″cons: terminate\n″ ) ;
return 0;

}

Figure 107. The cons_fgets Program
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$ prod_fputs | cons_fgets &

.

.

.

prod: wrote 65535 bytes of 226.
cons: read 65535 bytes of 226.
prod: wrote 65535 bytes of 227.
cons: read 65535 bytes of 227.
prod: wrote 65535 bytes of 228.
cons: read 65535 bytes of 228.
prod: wrote 65535 bytes of 229.
cons: read 65535 bytes of 229.
$ kill -USR1 7530
prod: wrote 65535 bytes of 230.
cons: read prod: caught SIGUSR1.
prod: EINTR error writing 231.
65535 bytes of 230.
prod: wrote 65535 bytes of 231.
cons: read 102629 bytes of 231.
cons: data error!
prod: fputs(): Broken pipe

Figure 108. Failure of fputs to Deal with Being Interrupted

When the prod_fputs program is started with an argument, it installs the signal
handler for the SIGUSR1 signal such that restartable interrupted system calls are
automatically restarted. This means that when the write call in fputs is
interrupted by the execution of the SIGUSR1 signal, the write system call is
restarted automatically. The caller of fputs never receives an error indication.
Even in the face of constant bombardment of the prod_fputs process with the
SIGUSR1 signal, the prod_fputs process continuously sends the expected data
pattern to its standard output.

7.8 Protecting errno in a Signal Handler
The XPG4 man page for sigaction points out that routines called by a signal
handler may change the value of the global variable errno. It suggests that a
signal handler might want to save the value of errno when it starts and restore
the value just before it returns.

The code in Figure 109 on page 183 illustrates why saving and restoring the
value of errno in a signal handler may be important. The main routine installs a
signal handler, refresh, for the SIGHUP signal. The signal handler will open and
read a configuration file. The call to open in refresh may fail. If it fails, errno will
be set to some value. After installing the signal handler, the main routine creates
a child process, and waits for the child process to terminate. Since the program
has installed a signal handler that may return, the call to wait is imbedded in a
loop that tests for interruption of the wait call. Suppose that while this program
is blocked in wait, the SIGHUP signal is delivered to the process. The refresh
routine will be executed. When the refresh routine returns, the wait function will
return to main with a return value of -1, and errno will be set to EINTR. Suppose
that SIGHUP is delivered to the process again, before the process has a chance to
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examine the value of errno. The refresh routine will be executed again. If the
open call in refresh fails, the value of errno may be changed. For example, if the
configuration file does not exist, errno will be set to ENOENT. The refresh routine
returns, and the main routine can finally examine the value of errno that
presumably was set by wait. But the value that was set by wait was changed
when refresh called open. Instead of finding the errno value to be EINTR, the main
routine will find it to be ENOENT. The program will mistakenly report that wait
returned an errno value of ENOENT.
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#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/wait.h>
#include <sys/types.h>

void refresh(int signo)
{

int fd;

if ((fd = open(″ /etc/configfile″ ,  O_RDONLY)) == -1)
return;

/* ... Code that reads the configuration file goes here. ... */
close(fd);
return;

}

int main(int argc, char **argv)
{

struct sigaction sa;
pid_t child_pid;
int child_status;

sa.sa_handler = refresh;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;

(void) sigaction(SIGHUP, &sa, NULL);

/* ... Code that creates a child process goes here. ... */

do {
child_pid = wait(&child_status);
/*
* Suppose SIGHUP is delivered here; errno may be changed.
*/

} while ( (child_pid == (pid_t)-1) && (errno == EINTR) );

if (child_pid == (pid_t)-1) {
perror(″wait(): ″ ) ;

}

return 0;
}

Figure 109. Illustration of a Signal Handler Changing the Value of errno

Figure 110 on page 184 shows a modification to the refresh signal handler that
saves and restores the value of errno. The value of errno can safely be stored in
a variable of type int, because the ANSI C standard specifies errno must have
type int.
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void refresh(int signo)
{

int fd;
int saved_errno;

saved_errno = errno;

if ((fd = open(″ /etc/configfile″ ,  O_RDONLY)) == -1) {
errno = saved_errno;
return;

}

/* ... Code that reads the configuration file goes here. ... */

(void) close(fd);
errno = saved_errno;

return;
}

Figure 110. Illustration of a Signal Handler Protecting the Value of errno

Experimentation indicates that saving and restoring the value of errno in AIX 4.1
is not required. After a signal handler returns, AIX appears to restore the value
of errno to the value it had before the signal handler was executed. This does
not appear to be required by any standard, however. For portability, it is
suggested that a signal handler save and restore errno if its value can be
changed by the signal handler.

7.9 Doing the Right Thing with Signals
Often it is difficult to do the right thing when it comes to processing signals.
Consider the following scenario: A program catches the SIGTERM signal. When
the program catches SIGTERM, it wants to clean up and terminate. In order to
clean up correctly, it needs to call some routines that are not signal-safe.
Assuming the program is peppered with calls to signal-unsafe routines, calling
signal-unsafe routines in the signal handler can be risky, as discussed in 7.4,
“Signal Handlers and Signal-Safe Routines” on page 156.

If it is feasible to block the delivery of the SIGTERM signal whenever the program
is calling signal-unsafe routines, the SIGTERM signal handler can safely call
signal-unsafe routines to clean up and terminate. An outline of this approach is
shown in Figure 111 on page 185.
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#include <unistd.h>
#include <stdlib.h>
#include <signal.h>

void term_handler(int signo)
{

/* ... Signal-safe and/or unsafe routines ... */
exit(0); /* exit() itself is signal-unsafe. */

}

int main(int argc, char **argv)
{

struct sigaction sa;
sigset_t term_mask, saved_mask;

(void) sigemptyset(&term_mask);
(void) sigaddset(&term_mask, SIGTERM);

sa.sa_handler = term_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
(void) sigaction(SIGTERM, &sa, NULL);

for ( ; ; ) {

/* ... Signal-safe routines are executed here ... */

(void) sigprocmask(SIG_BLOCK, &term_mask, &saved_mask);

/* ... Signal-unsafe routines are executed here ... */

(void) sigprocmask(SIG_SETMASK, &saved_mask, NULL);

/* ... Signal-safe routines are executed here ... */

(void) sigprocmask(SIG_BLOCK, &term_mask, &saved_mask);

/* ... Signal-unsafe routines are executed here ... */

(void) sigprocmask(SIG_SETMASK, &saved_mask, NULL);

/* ... Signal-safe routines are executed here ... */
}

/* Never reached. */
return 0;

}

Figure 111. Blocking SIGTERM When Signal-Unsafe Routines Are Called

It may be impractical to block the SIGTERM signal every time the program calls a
signal-unsafe function. If this is the case, the signal handler could just set a
global variable to indicate the signal has been received. The rest of the program
would then have to periodically check the global variable. If the global variable
indicates the SIGTERM signal has arrived, the program should clean up and
terminate. The program must check the value of the global variable at intervals
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that will allow for a timely response to the signal. In the case of SIGTERM, this
would mean acting on the arrival of the signal within 20 or 30 seconds41.

Assume that the program includes a call to the select routine, and the program
spends most of its time blocked in the select routine waiting for a request from a
client. Figure 112 on page 187 illustrates how the program may choose to deal
with the SIGTERM signal under these conditions. The program checks the value of
the stop_requested flag just before calling the select routine. If the flag has been
set to a non-zero value, the SIGTERM signal has been sent to the process; instead
of calling the select routine to wait for a new client request, the program cleans
up and terminates itself. There is a race condition in Figure 112 on page 187. It
is possible that just after the program tests the value of the stop_requested flag,
but before it calls the select routine, the SIGTERM signal is delivered to the
process running the program. The SIGTERM signal handler sets stop_requested to
1, and returns. Then the select routine is called. The select routine blocks
waiting for another client request. The program will not be able to check the
value of the stop_requested flag until a client request is received. It is very
possible that the program will not process the SIGTERM signal in a timely fashion.

41 When a system is shutting down, it is common for the system to send the SIGTERM signal to all running processes, wait 20 or 30
seconds, and send SIGKILL to the processes still running. The SIGKILL signal kil ls the processes immediately.
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#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <signal.h>
#include <sys/select.h>

volatile sig_atomic_t stop_requested = 0;

void term_handler(int signo)
{

stop_requested = 1;
return;

}

int main(int argc, char **argv)
{

struct sigaction sa;
fd_set read_fds;
int sock_fd;

sa.sa_handler = term_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
(void) sigaction(SIGTERM, &sa, NULL);

/* ... Initialize the client request socket, and set up sock_fd ... */

for ( ; ; ) {
FD_ZERO(&read_fds);
FD_SET(sock_fd, &read_fds);

if (stop_requested) break; /* SIGTERM delivered */

/* ... Race condition exists here! ... */

if (select(sock_fd+1, &read_fds, NULL, NULL, NULL) == -1) {
if (errno == EINTR) continue;
/* Unexpected error; log message and get out. */
break;

}

/* ... Process client request with any routines needed ... */
}

/* ... Call signal-safe and/or -unsafe routines to clean up .. */
return 0;

}

Figure 112. Processing a Signal Request Outside of a Signal Handler

Figure 113 on page 188 shows a possible solution to the race condition
described previously. The call to select is changed such that it specifies a time
out value. If no client requests have been received in 15 seconds, the select
routine will return. This allows the program to examine the value of the
stop_requested flag at least once every 15 seconds. The problem with this
solution is that it is a polling solution. Approximately every 15 seconds, the
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process will run. Usually it will find that there is nothing to do but to call select
again to wait for something interesting to happen, or for the expiration of the
next 15 second interval. If this is the only reason for the process to poll, this
solution is not attractive. If there are other reasons for the process to poll, this
solution might be considered.

#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <signal.h>
#include <sys/select.h>
#include <sys/time.h>

volatile sig_atomic_t stop_requested = 0;

void term_handler(int signo)
{

stop_requested = 1;
return;

}

int main(int argc, char **argv)
{

struct sigaction sa;
fd_set read_fds;
int sock_fd, rc;
struct timeval tmout = {15, 0}; /* Fifteen second time out value */

sa.sa_handler = term_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
(void) sigaction(SIGTERM, &sa, NULL);

/* ... Initialize the client request socket, and set up sock_fd ... */

for ( ; ; ) {
FD_ZERO(&read_fds);
FD_SET(sock_fd, &read_fds);

if (stop_requested) break; /* SIGTERM delivered */

if ((rc = select(sock_fd+1, &read_fds, NULL, NULL, &tmout)) == -1) {
if (errno == EINTR) continue;
/* Unexpected error; log message and get out. */
break;

}
if (rc == 0) continue; /* Timeout */

/* ... Process client request with any routines needed ... */
}

/* ... Call signal-safe and/or -unsafe routines to clean up .. */
return 0;

}

Figure 113. Avoiding a Race Condit ion through Poll ing
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Another solution to the race condition in Figure 112 on page 187 is presented in
Figure 114 on page 189. This solution is much more complicated than that
presented in Figure 113, but it does not involve polling. Before calling select,
the context of the process is saved by calling sigsetjmp. While sigsetjmp is being
called, the SIGTERM signal must be blocked, because the SIGTERM signal handler
may now call siglongjmp to long jump to the point of the sigsetjmp call. If
siglongjmp were called before or as the process context was being saved by
sigsetjmp, the results would be unpredictable. After sigsetjmp saves the context
of the process, a global variable, stop_jump, is set to indicate that the process
context has been saved, and the SIGTERM signal is unblocked. The program then
proceeds to check the value of stop_requested, and, if it is not set, to call the
select routine. If the SIGTERM signal is delivered just before the select routine is
called, or while the select routine is being called, or while the select routine is
blocked, the SIGTERM signal handler will call siglongjmp to long jump to the point
where sigsetjmp was called. Then the program will test the stop_requested flag,
clean up, and terminate the process. The program sets stop_jump to 0 before
processing a client request. It is assumed that this program does not want the
SIGTERM signal handler to long jump while a client request is being processed.
This depends, of course, on the application. The value of stop_jump can be
changed without blocking the SIGTERM signal, since stop_jump is defined to be of
type sig_atomic_t.

#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <signal.h>
#include <sys/select.h>
#include <sys/time.h>
#include <setjmp.h>

volatile sig_atomic_t stop_requested = 0;
volatile sig_atomic_t stop_jump = 0;
sigjmp_buf jmp_env;

void term_handler(int signo)
{

stop_requested = 1;
if (stop_jump) {

siglongjmp(jmp_env, 1);
}
return;

}

Figure 114 (Part 1 of 2). Avoiding a Race Condit ion through Long Jumping
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int main(int argc, char **argv)
{

struct sigaction sa;
fd_set read_fds;
int sock_fd;
sigset_t block_mask, saved_mask;

(void) sigemptyset(&block_mask);
(void) sigaddset(&block_mask, SIGTERM);

sa.sa_handler = term_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
(void) sigaction(SIGTERM, &sa, NULL);

/* ... Initialize the client request socket, and set up sock_fd ... */

(void) sigprocmask(SIG_BLOCK, &block_mask, &saved_mask);
stop_jump = !sigsetjmp(jmp_env, 1);
(void) sigprocmask(SIG_SETMASK, &saved_mask, NULL);

while (!stop_requested) {
FD_ZERO(&read_fds);
FD_SET(sock_fd, &read_fds);

if (select(sock_fd+1, &read_fds, NULL, NULL, NULL) == -1) {
if (errno == EINTR) continue;
stop_jump = 0;
/* Unexpected error; log message and get out. */
break;

}

stop_jump = 0;

/* ... Process client request with any routines needed ... */

stop_jump = 1;
}

stop_jump = 0;

/* ... Call signal-safe and/or -unsafe routines to clean up .. */
return 0;

}

Figure 114 (Part 2 of 2). Avoiding a Race Condit ion through Long Jumping

It is important to realize that the solution presented in Figure 114 on page 189
will only work if the select routine is signal-safe on the system running the
program. It should also be noted that for the time period in which it is possible
for the SIGTERM signal handler to call siglongjmp, the program does not call any
signal-unsafe routine. This allows the program to call signal-unsafe routines
with confidence after the SIGTERM signal handler has called siglongjmp.

As shown in Figure 114 on page 189, sigsetjmp and siglongjmp can be useful for
eliminating race conditions associated with processing signals. However, they
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must be used with care. If a program has more than one signal handler, one
signal handler interrupts the execution of another signal handler, and the second
signal handler calls siglongjmp, the first signal handler will not complete its
execution. This problem may be avoided by not allowing two signal handlers to
execute concurrently; use the sa_mask field of the sigaction structure to block
signal delivery while a signal handler is running. Another issue to consider
seriously is the state of the process signal mask. In Figure 114 on page 189,
sigsetjmp is called with an non-zero value for the second parameter. As a
result, the sigsetjmp routine saves the state of the process signal mask, and the
call to siglongjmp restores the process signal mask to its saved state.

None of the solutions presented thus far is totally satisfying. One solution
involves polling, and the rest are difficult to use. This leads to the proposal of
the signal pipe, described in the next section.

7.10 The Signal Pipe
In the previous section, several solutions to the problem of processing signals
while waiting for client activity with the select system call were considered.
Much of the discussion involved avoiding a race condition that could cause a
program to miss a signal. The root cause of the race condition is that the
method used to check for the delivery of a signal is unrelated to the method
used to determine if a request has been sent by a client. The solution
considered in this section allows a program to check for signal delivery and
client requests using the same method, the select system call. Signals are
converted into something that can be detected by select, using a mechanism
called the “signal pipe.”

The basic idea of the signal pipe is simple. An unnamed pipe is created for
signal handling. When a signal is caught by a signal handler, the handler writes
data into the pipe, if data is not already in the pipe. When the program waits for
client requests using select, it also determines if the read end of the pipe is
ready for reading. Using this technique, race conditions are avoided, polling is
avoided, and any number of signals can be handled correctly.

Figure 115 on page 192 shows the skeleton of a program using a signal pipe. At
the beginning of the program, a routine named sig_pipe_start is called. That
routine is given an array of signal numbers to be handled by the signal pipe.
The sig_pipe_start routine creates a pipe, and installs a signal handler for the
specified signals. The sig_pipe_start routine returns the file descriptor of the
read end of the pipe. The program determines when the pipe can be read, using
select along with the file descriptor returned by sig_pipe_start. When invoked,
the signal handler installed by sig_pipe_start will ensure some data is in the
pipe. Whenever the pipe file descriptor is ready to be read, the program calls
sig_pipe_caught for each signal handled by the signal pipe; this allows the
program to determine which signals have been delivered. The sig_pipe_caught
routine will remove data from the pipe once all delivered signals have been
reported to the program. Removing the data from the pipe also resets the ready
to be read status to not ready. So, if another signal is not delivered by the time
select is called again, select will block the program until a signal is delivered or
a client request is received. Once the program is finished with the signal pipe,
sig_pipe_stop is called to clean up the signal pipe.

Figure 116 on page 194 shows the signal pipe implementation. Four global
variables are used to keep the state of the signal pipe. The sig_pipe_sigs
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variable is a signal set that indicates which signals are being handled by the
signal pipe. The sig_pipe_caught_sigs variable is a signal set that indicates
which signals have been delivered, but not yet reported to the user of the signal
pipe. The sig_pipe_caught_cnt variable is a count of the number of signals that
have been delivered, but not reported. It is used to determine when it is
necessary to read from or write to the pipe. Finally, the sig_pipe_fds variable is
used to store the file descriptors of the read and write ends of the pipe.

Note that in the sig_pipe_start routine, both ends of the pipe are made
non-blocking. The program should not be blocked while reading or writing the
pipe. Writing into the pipe is done in the sig_pipe_catcher signal handler.
Blocking there would block the program indefinitely. Reading from the pipe is
done in the sig_pipe_caught routine. Blocking there would cause the program to
block until a signal was delivered; client requests would be ignored.

Note that the signal pipe implementation blocks signals in order to serialize
access to the global variables that are used to reflect the state of the signal pipe.
The signal handler is installed in such a manner that whenever it is invoked, all
signals handled by the signal pipe are blocked. These signals are also blocked
in sig_pipe_caught.

Note that the signal handler only calls signal-safe routines. The user of the
signal pipe may freely use routines that are signal-safe and those that are not.

The sig_pipe_cleanup routine restores signal dispositions to the default, SIG_DFL.
This may not have been the best choice, since the default is often process
termination. An alternative is to specify SIG_IGN.

 #include <unistd.h>
 #include <stdlib.h>
 #include <stdio.h>
 #include <errno.h>
 #include <signal.h>
 #include <sys/select.h>

 extern int sig_pipe_start(int *sigs, int num_sigs);
 extern int sig_pipe_caught(int sig);
 extern int sig_pipe_stop(void);

Figure 115 (Part 1 of 2). Using a Signal Pipe
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 int main(int argc, char **argv)
 {

int sigs[] = {SIGUSR1, SIGUSR2, SIGTERM};
int rc;
fd_set read_fds;
int sock_fd, sig_pipe_fd, max_fd;

sig_pipe_fd = sig_pipe_start(sigs, sizeof sigs / sizeof sigs[0]);
if (sig_pipe_fd == -1) {

/* Unexpected error; log message and get out. */
exit(1);

}

/* ... Initialize the client request socket, and set up sock_fd ... */

for ( ; ; ) {
FD_ZERO(&read_fds);
FD_SET(sock_fd, &read_fds);
FD_SET(sig_pipe_fd, &read_fds);
max_fd = (sock_fd > sig_pipe_fd) ? sock_fd : sig_pipe_fd;

do {
rc = select(max_fd+1, &read_fds, NULL, NULL, NULL);

} while (rc == -1 && errno == EINTR);

if (rc == -1) {
/* Unexpected error; log message and get out. */
break;

}

if (FD_ISSET(sig_pipe_fd, &read_fds)) {
if (sig_pipe_caught(SIGUSR1)) {

/* ... Process SIGUSR1 request ... */
}
if (sig_pipe_caught(SIGUSR2)) {

/* ... Process SIGUSR2 request ... */
}
if (sig_pipe_caught(SIGTERM)) {

break;
}

}

if (FD_ISSET(sock_fd, &read_fds)) {
/* ... Process client request with any routines needed ... */

}
}

(void) sig_pipe_stop();

/* ... Call signal safe and/or unsafe routines to clean up ... */
return 0;

 }

Figure 115 (Part 2 of 2). Using a Signal Pipe
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 #include <unistd.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <signal.h>
 #include <fcntl.h>
 #include <sys/types.h>

 #define SIG_PIPE_ASSERT(assertion) if (!(assertion)) { _exit(255); }

 static sigset_t sig_pipe_sigs;
 static sigset_t sig_pipe_caught_sigs;
 static int sig_pipe_caught_cnt;
 static int sig_pipe_fds[2] = {-1, -1};

 extern int sig_pipe_start(int *sigs, int num_sigs);
 extern int sig_pipe_caught(int sig);
 extern int sig_pipe_stop(void);

 static int sig_pipe_nonbock(int pipe_fd);
 static void sig_pipe_catcher(int sig);
 static int sig_pipe_cleanup(void);

Figure 116 (Part 1 of 5). Signal Pipe Implementation
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 int sig_pipe_start(int *sigs, int num_sigs)
 {

int i;
struct sigaction sa;

if (sig_pipe_fds[0] >= 0) {
/* Log an error message */
return -1;

}

sigemptyset(&sig_pipe_sigs);

for (i = 0; i < num_sigs; i++) {
if (sigaddset(&sig_pipe_sigs, sigs[i]) == -1) {

/* Log an error message */
(void) sig_pipe_cleanup();
return -1;

}
}

sigemptyset(&sig_pipe_caught_sigs);
sig_pipe_caught_cnt = 0;

if (pipe(sig_pipe_fds) == -1) {
/* Log an error message */
(void) sig_pipe_cleanup();
return -1;

}

if ((sig_pipe_nonbock(sig_pipe_fds[0]) == -1) ||
(sig_pipe_nonbock(sig_pipe_fds[1]) == -1)) {
(void) sig_pipe_cleanup();
return -1;

}

sa.sa_handler = sig_pipe_catcher;
sa.sa_mask = sig_pipe_sigs;
sa.sa_flags = SA_RESTART;

for (i = 0; i < num_sigs; i++) {
if (sigaction(sigs[i], &sa, NULL) == -1) {

/* Log an error message */
(void) sig_pipe_cleanup();
return -1;

}
}

return sig_pipe_fds[0];
 }

Figure 116 (Part 2 of 5). Signal Pipe Implementation
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 static int sig_pipe_nonbock(int pipe_fd)
 {

int file_flags;

if ((file_flags = fcntl(pipe_fd, F_GETFL, 0)) == -1) {
/* Log an error message */
return -1;

}

if (fcntl(pipe_fd, F_SETFL, (file_flags | O_NONBLOCK)) == -1) {
/* Log an error message */
return -1;

}

return 0;
 }

 static void sig_pipe_catcher(int sig)
 {

int sig_caught;
int rc;

sig_caught = sigismember(&sig_pipe_caught_sigs, sig);
SIG_PIPE_ASSERT(sig_caught >= 0);

if (!sig_caught) {

rc = sigaddset(&sig_pipe_caught_sigs, sig);
SIG_PIPE_ASSERT(rc == 0);

if (sig_pipe_caught_cnt++ == 0) {
do {

rc = write(sig_pipe_fds[1], ″ ″,  1);
} while (rc == -1 && errno == EINTR);
SIG_PIPE_ASSERT(rc == 1);

}

}

return;
 }

Figure 116 (Part 3 of 5). Signal Pipe Implementation
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 int sig_pipe_caught(int sig)
 {

int sig_caught;
sigset_t saved_sigset;
char buf[20];
int rc;

if (sig < 1 || sig > SIGMAX) {
return 0;

}

rc = sigprocmask(SIG_BLOCK, &sig_pipe_sigs, &saved_sigset);
SIG_PIPE_ASSERT(rc == 0);

sig_caught = sigismember(&sig_pipe_caught_sigs, sig);
SIG_PIPE_ASSERT(sig_caught >= 0);

if (sig_caught) {

rc = sigdelset(&sig_pipe_caught_sigs, sig);
SIG_PIPE_ASSERT(rc == 0);

if (--sig_pipe_caught_cnt == 0) {
do {

rc = read(sig_pipe_fds[0], &buf, sizeof buf);
} while (rc > 0 || rc == -1 && errno == EINTR);
SIG_PIPE_ASSERT(rc == -1 && errno == EAGAIN);

}

}

rc = sigprocmask(SIG_SETMASK, &saved_sigset, NULL);
SIG_PIPE_ASSERT(rc == 0);

return sig_caught;
 }

Figure 116 (Part 4 of 5). Signal Pipe Implementation
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int sig_pipe_stop(void)
{

if (sig_pipe_fds[0] < 0) {
/* Log an error message */
return -1;

}

return sig_pipe_cleanup();
 }

 static int sig_pipe_cleanup(void)
 {

int rc = 0;
int sig;
int sig_member;
struct sigaction sa;

sa.sa_handler = SIG_DFL;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;

for (sig = 1; sig <= SIGMAX; sig++) {
sig_member = sigismember(&sig_pipe_sigs, sig);
if (sig_member == -1) {

rc = -1;
continue;

}
if (sig_member) {

if (sigaction(sig, &sa, NULL) == -1) {
/* Log an error message */
rc = -1;

}
}

}

sigemptyset(&sig_pipe_sigs);
sigemptyset(&sig_pipe_caught_sigs);
sig_pipe_caught_cnt = 0;

if (close(sig_pipe_fds[1]) == -1) {
/* Log an error message */
rc = -1;

}
sig_pipe_fds[1] = -1;

if (close(sig_pipe_fds[0]) == -1) {
/* Log an error message */
rc = -1;

}
sig_pipe_fds[0] = -1;

return rc;
 }

Figure 116 (Part 5 of 5). Signal Pipe Implementation
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7.11 Multi-Threaded Programs
POSIX 1003.1c introduces standardized routines for creating multi-threaded
processes. AIX 4.1 supports draft 7 of this standard. See Chapter 9, “Parallel
Programming” and Chapter 11, “Threads Programming Guidelines” in AIX
Version 4.1: General Programming Concepts: Writing and Debugging Programs
(SC23-2533), for complete information about threads programming in AIX 4.1.
This section will briefly discuss signal handling in multi-threaded processes.

A multi-threaded process may have signal handlers like a traditional
single-threaded process. A signal handler is considered a resource of the
process. A signal may be sent to a specific thread of a process, or to the
process itself. When a signal is delivered to a specific thread, the signal is
handled by that thread. When a signal is delivered to the process, any thread of
the process may be called upon to handle the signal. Each thread of a
multi-threaded process has a thread signal mask, instead of the process having
a global process signal mask. Therefore, threads may independently block
signals. When a signal is delivered to a process, it is handled by a thread that
does not have that signal blocked, if there are any. If all the process threads
have the signal blocked, the signal remains pending until a thread unblocks the
signal.

In addition to the signal handler model for dealing with signals, a multi-threaded
process may use a new model based on a routine called sigwait. A program
using this model typically creates one thread specifically for the purpose of
handling signals. All threads block the signals of interest to the process,
including the thread which will handle the signals. The thread which will handle
the signals loops on a call to sigwait. The sigwait routine unblocks and waits for
specified signals to be delivered to the thread. When one of the identified
signals has been delivered to the thread, the sigwait routine blocks the signals
again, and returns the signal number of the signal that has been delivered. The
thread can then process the signal. This is all done without the program having
to define a signal handler. The thread can safely process the signal with any
thread-safe routine. Since all the libc.a routines have been made thread-safe
(and placed in libc_r.a), the thread can safely use many more routines than a
signal handler can. Note that in this model, all signals sent to the process are
delivered to the signal handling thread, because only the signal handling thread
unblocks the signals.

Figure 117 on page 200 shows the source code for a program called
print_test4. It is similar in function to the print_test program shown in
Figure 89 on page 161, the print_test2 program shown in Figure 91 on
page 163, and the print_test3 program shown in Figure 93 on page 165. The
program calls printf to print messages in the main routine and calls printf to
print messages in the signal_routine routine. The process starts with one
thread, the initial thread, running the main routine. The main routine uses
sigthreadmask to block the SIGUSR1 signal. A second thread is then created when
main calls pthread_create. This second thread executes the signal_routine
routine. The initial thread continues to execute the main routine, which prints
messages to the standard output forever. The second thread, meanwhile, blocks
the SIGUSR1 signal with sigthreadmask; this is actually not necessary, because the
second thread inherited its signal mask from the initial thread, which already
blocked SIGUSR1.
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Next, the second thread executes a loop. In the loop, sigwait is called. The
signal mask passed to sigwait specifies the SIGUSR1 signal. The sigwait routine
unblocks SIGUSR1, and waits until the thread receives the SIGUSR1 signal. When
the SIGUSR1 signal is received, sigwait returns, and the signal_routine routine
prints a message. You may recall from 7.4, “Signal Handlers and Signal-Safe
Routines” on page 156, that there were problems when a signal handler
interrupted a printf routine and then executed printf. The problem occurred
because the printf routine was not signal-safe. A multi-threaded program is
bound with libc_r.a; all the routines in this standard library are thread-safe.
Routines, like printf, are designed to work correctly when called concurrently
from different threads. The print_test4 routine can be run indefinitely without
failure, even while constantly receiving the SIGUSR1 signal.

#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void *signal_routine(void * arg)
{

sigset_t block_mask;
int signo;

(void) sigemptyset(&block_mask);
(void) sigaddset(&block_mask, SIGUSR1);
(void) sigthreadmask(SIG_BLOCK, &block_mask, NULL);

while (1 == 1) {
(void) sigwait(&block_mask, &signo);

if (signo != SIGUSR1) {
continue;

}

fprintf(stdout,
″It′ s fine handling signal %2$d in process %1$d.\n″ ,
getpid(), signo);

}

return NULL;

}

Figure 117 (Part 1 of 2). Source Code for the print_test4 Program
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int main(int argc, char **argv)
{

sigset_t block_mask;
pthread_t signal_thread;
int rc;

(void) sigemptyset(&block_mask);
(void) sigaddset(&block_mask, SIGUSR1);
(void) sigthreadmask(SIG_BLOCK, &block_mask, NULL);

rc = pthread_create(&signal_thread, NULL, signal_routine, NULL);
if (rc != 0) {

fprintf(stderr, ″pthread_create() error: %d.\n″ ,  rc);
exit(1);

}

while (1 == 1) {

fprintf(stdout, ″It′ s fine being in the %2$s ″
″of process %1$d.\n″ ,  getpid(), ″mainline″ ) ;

}

return 0;
}

Figure 117 (Part 2 of 2). Source Code for the print_test4 Program
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Chapter 8. AIX Paging Space Allocation

A process on an AIX system can run with one of two paging space allocation
policies. The paging space allocation policy with which a process runs
determines when paging-space blocks are allocated for the pages of the
process. It also affects what might happen to the process when the system runs
low on free paging-space blocks. This chapter describes the AIX paging space
allocation policies, and issues related to those policies. Of particular interest
are the actions a process can take to protect itself from termination when the
system runs low on free paging-space blocks.

8.1 The Paging Space Allocation Policies Described
A process running on an AIX system runs with either the early paging space
allocation policy or the late paging space allocation policy. The late paging
space allocation policy is the default policy.

When a process runs with the late paging space allocation policy, a
paging-space block is not allocated for a page in the address space of the
process unless and until the process modifies the page. If a process allocates a
sparse array while running under this policy, paging-space blocks are only
allocated for the pages actually modified in the array. No paging-space blocks
are allocated for pages that are not modified. This policy may allow more
processes to run concurrently on a system with a given amount of paging space.
However, it may also allow the system to overcommit its resources. Processes
may be allowed to allocate pages for which the system will not be able to
provide paging-space blocks.

When a process runs with the early paging space allocation policy, a
paging-space block is allocated for a page in the address space of the process
when the page is allocated. For example, if the process allocates a large array,
enough paging-space blocks are also allocated to allow the array to be paged
out. If there are not enough free paging-space blocks to cover the memory
being allocated, the allocation routine returns an error. When processes are
running on the system with this policy, those processes are guaranteed to be
able to utilize the pages successfully allocated to their address spaces.
However, the system may require more paging space than if the processes were
running with the late paging space allocation policy.

8.2 Actions Taken by AIX When Free Paging Space Is Low
An AIX system includes two configurable thresholds related to low paging space.
These are the paging-space warning threshold and the paging-space kill
threshold.

When the number of free paging-space blocks on the system falls below the
paging-space warning threshold, all user processes are sent the SIGDANGER
signal. The default disposition for this signal is to ignore it. A process may
install a signal handler for SIGDANGER. This signal handler could release
unneeded paging-space blocks, which would increase the number of free
paging-space blocks on the system.
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If the number of free paging-space blocks on the system falls below the
paging-space kill threshold, the kernel will start taking action to free
paging-space blocks. It will do this by sending the SIGKILL signal to selected
processes. A process cannot change the disposition of the SIGKILL signal. A
process receiving the SIGKILL signal will terminate. This will increase the
number of free paging-space blocks on the system. The kernel will continue to
kill user processes until the number of free paging-space blocks exceeds the
paging-space kill threshold. The kernel tries to send the SIGKILL signal to the
processes using the most paging-space blocks. Certain processes are exempt
from being terminated. These include:

• The init process

• A process that has a SIGDANGER signal handler installed

• A process running with the early paging space allocation policy

A daemon process important to the proper functioning of a system should
protect itself from termination when the system is low on paging space. This
can be done by installing a signal handler for SIGDANGER, discussed in 8.4,
“Installing a SIGDANGER Signal Handler” on page 212, or by running with the early
paging space allocation policy, discussed in 8.5, “Running with the Early Paging
Space Allocation Policy” on page 215.

8.3 Influencing and Monitoring Free Paging Space
This section discusses how a program can monitor free paging space and affect
the availability of paging space.

8.3.1 Monitoring Free Paging Space from a Program
AIX provides the psdanger routine, which allows a program to determine the total
number of paging-space blocks on the system, the number of free paging-space
blocks on the system, the difference between the number of free paging-space
blocks and the paging-space warning threshold, and the difference between the
number of free paging-space blocks and the paging-space kill threshold.
Figure 118 on page 205 shows the source of a program named freeps that
displays information about the paging space on the system. The display_stats
routine collects information with four calls to psdanger, and then displays
information to standard output. The call to psdanger with the argument of 0
obtains the total number of paging-space blocks on the system. The call with
argument -1 obtains the number of free paging-space blocks on the system. The
call with argument SIGDANGER obtains the difference between the number of free
paging-space blocks and the paging-space warning threshold. The call with
argument SIGKILL obtains the difference between the number of free
paging-space blocks and the paging-space kill threshold. The values for the
paging-space warning threshold and paging-space kill threshold can easily be
computed from the data returned by the four calls to psdanger. The main routine
calls display_stats the number of times and at the interval specified by the
arguments to the program. Figure 119 on page 207 shows some examples of
running the freeps program.
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#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

void display_stats(int header)
{

int total_psb; /* Total paging space blocks */
int free_psb; /* Free paging space blocks */
int free_psb_aw; /* Free paging space blocks above warning */
int free_psb_ak; /* Free paging space blocks above kill */

total_psb = psdanger(0);
free_psb = psdanger(-1);
free_psb_aw = psdanger(SIGDANGER);
free_psb_ak = psdanger(SIGKILL);

if (header) {
printf(″%+9s %+9s %+9s %+9s %+9s %+9s %+9s\n″ ,

″tpsb″,  ″fpsb″, ″%used″ ,
″fpsbaw″,  ″psbw″,  ″fpsbak″,  ″psbk″ ) ;

}

printf(″%9d %9d %9.2f %9d %9d %9d %9d\n″ ,  total_psb, free_psb,
((total_psb - free_psb) * 100.0) / total_psb,
free_psb_aw, free_psb - free_psb_aw,
free_psb_ak, free_psb - free_psb_ak);

return;
}

Figure 118 (Part 1 of 2). Source Code for the freeps Program
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int main(int argc, char **argv)
{

int interval, count, i;

switch (argc) {

case 3:
interval = atoi(argv[1]);
count = atoi(argv[2]);
break;

case 2:
interval = atoi(argv[1]);
count = -1;
break;

case 1:
interval = 0;
count = 0;
break;

default:
fprintf(stderr, ″Usage %s [Interval [Count] ]\n″ ,

argv[0]);
exit(1);

}

display_stats(1);

for (i = 0; (count < 0) || (i < count); (count > 0) ? i++ : 0) {

sleep(interval);
display_stats(0);

}

return 0;
}

Figure 118 (Part 2 of 2). Source Code for the freeps Program
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$ ./freeps
tpsb fpsb %used fpsbaw psbw fpsbak psbk
65536 63232 3.52 61184 2048 62720 512

$ ./freeps 1 10
tpsb fpsb %used fpsbaw psbw fpsbak psbk
65536 63232 3.52 61184 2048 62720 512
65536 63228 3.52 61180 2048 62716 512
65536 63228 3.52 61180 2048 62716 512
65536 63228 3.52 61180 2048 62716 512
65536 63228 3.52 61180 2048 62716 512
65536 63228 3.52 61180 2048 62716 512
65536 63228 3.52 61180 2048 62716 512
65536 63228 3.52 61180 2048 62716 512
65536 63228 3.52 61180 2048 62716 512
65536 63228 3.52 61180 2048 62716 512
65536 63228 3.52 61180 2048 62716 512

$

Figure 119. Running the freeps Program

8.3.2 Influencing Free Paging Space from a Program
Figure 120 on page 208 shows the source code for a program named piggy; it
will be used to demonstrate how a program can influence the amount of free
paging space on the system. The program includes a slightly modified version
of the display_stats routine introduced in Figure 118 on page 205. The main
routine calls display_stats often to illustrate how the actions of main affect the
free paging space on the system. The steps taken by the program are:

20,000 pages are allocated.
Each page is modified.
The allocated pages may be disclaimed.
The allocated pages are freed.

What it means to disclaim a page will be explained shortly. The following results
were obtained on a system that was running little else besides the piggy
program.
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#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <errno.h>
#include <signal.h>
#include <sys/shm.h>

#define PAGESIZE 4096
#define PAGEALLOC 20000
#define BYTEALLOC (PAGESIZE * PAGEALLOC)

void display_stats(int header, char *header_string)
{

int total_psb; /* Total paging space blocks */
int free_psb; /* Free paging space blocks */
int free_psb_aw; /* Free paging space blocks above warning */
int free_psb_ak; /* Free paging space blocks above kill */

total_psb = psdanger(0);
free_psb = psdanger(-1);
free_psb_aw = psdanger(SIGDANGER);
free_psb_ak = psdanger(SIGKILL);

if (header) {
printf(″\n%+9s %+9s %+9s %+9s %+9s %+9s %+9s %+9s\n″ ,

″tpsb″,  ″fpsb″, ″%used″ ,
″fpsbaw″,  ″psbw″,  ″fpsbak″,  ″psbk″ ,  header_string);

}

printf(″%9d %9d %9.2f %9d %9d %9d %9d\n″ ,  total_psb, free_psb,
((total_psb - free_psb) * 100.0) / total_psb,
free_psb_aw, free_psb - free_psb_aw,
free_psb_ak, free_psb - free_psb_ak);

return;
}

Figure 120 (Part 1 of 2). The Source Code for the piggy Program
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int main(int argc, char **argv)
{

char *space, *ptr;

display_stats(1, ″start″ ) ;

if ((space = malloc(BYTEALLOC)) == NULL) {
perror(″malloc() failure: ″ ) ;
return 1;

}
display_stats(1, ″malloc″ ) ;

for (ptr = space; ptr < space + BYTEALLOC; ptr += PAGESIZE) {
*ptr = ′ \377′ ;

}
display_stats(1, ″touch″ ) ;

if (argc > 1) {
if (disclaim(space, BYTEALLOC, ZERO_MEM) == -1) {

perror(″disclaim() failure: ″ ) ;
return 1;

}
display_stats(1, ″disclaim″ ) ;

}

free(space);
display_stats(1, ″free″ ) ;

return 0;
}

Figure 120 (Part 2 of 2). The Source Code for the piggy Program

Figure 121 on page 210 shows a run of the piggy program. Once the program is
started, there are 63,288 free paging-space blocks on the system. After the
program allocates 20,000 pages, the number of free paging-space blocks on the
system has decreased by just 7 pages. The number of free paging-space blocks
does not decrease by 20,000 because the process is running with the late paging
space allocation policy. Once the program modifies all of the 20,000 allocated
pages, the number of free paging-space blocks decreases by 19,999. Apparently,
one of the paging-space blocks is allocated at malloc time. After the 20,000
pages are freed, the number of free paging-space blocks has not changed.
Calling free to free allocated memory does not free paging-space blocks.
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$ ./piggy

tpsb fpsb %used fpsbaw psbw fpsbak psbk start
65536 63288 3.43 61240 2048 62776 512

tpsb fpsb %used fpsbaw psbw fpsbak psbk malloc
65536 63281 3.44 61233 2048 62769 512

tpsb fpsb %used fpsbaw psbw fpsbak psbk touch
65536 43282 33.96 41234 2048 42770 512

tpsb fpsb %used fpsbaw psbw fpsbak psbk free
65536 43282 33.96 41234 2048 42770 512

Figure 121. A Run of the piggy Program (Late Allocation, Pages Are Not Disclaimed)

Figure 122 shows the next run of the piggy program. This time, an argument is
passed to the program. This causes the program to call disclaim after touching
the allocated pages. The disclaim routine is provided by AIX to allow a process
to declare that it no longer needs the contents of a range of memory in the
process address space. Any paging-space blocks allocated for the pages in the
specified range of memory are freed. Notice that after the piggy program calls
disclaim for the 20,000 pages of allocated memory, the number of free
paging-space blocks increases by 19,999 blocks.

$ ./piggy 1

tpsb fpsb %used fpsbaw psbw fpsbak psbk start
65536 63288 3.43 61240 2048 62776 512

tpsb fpsb %used fpsbaw psbw fpsbak psbk malloc
65536 63281 3.44 61233 2048 62769 512

tpsb fpsb %used fpsbaw psbw fpsbak psbk touch
65536 43282 33.96 41234 2048 42770 512

 tpsb fpsb %used fpsbaw psbw fpsbak psbk disclaim
65536 63281 3.44 61233 2048 62769 512

tpsb fpsb %used fpsbaw psbw fpsbak psbk free
65536 63281 3.44 61233 2048 62769 512

Figure 122. A Run of the piggy Program (Late Allocation, Pages Are Disclaimed)

If a program allocates large amounts of memory that are only needed
temporarily, it may do the system a service if it disclaims the memory, instead of
just freeing it. After a memory range has been disclaimed, attempts to fetch
data from the region will return zeros. The program can store new values in
disclaimed memory. When a value is stored in a disclaimed page, a
paging-space block is allocated for the page.
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Figure 123 on page 211 shows the piggy program being run with the early
paging space allocation policy42. Notice that when the program starts with the
early paging space allocation policy, the system has 79 fewer free paging-space
blocks than when it was started with the late paging space allocation policy.
Notice that once the program allocates 20,000 pages of memory, the number of
free paging-space blocks decreases by over 20,000 blocks. These paging-space
blocks are not available to other processes in the system, even if they are not
really used by the piggy program.

$ PSALLOC=early ./piggy

tpsb fpsb %used fpsbaw psbw fpsbak psbk start
65536 63209 3.55 61161 2048 62697 512

tpsb fpsb %used fpsbaw psbw fpsbak psbk malloc
65536 43193 34.09 41145 2048 42681 512

 tpsb fpsb %used fpsbaw psbw fpsbak psbk touch
65536 43193 34.09 41145 2048 42681 512

tpsb fpsb %used fpsbaw psbw fpsbak psbk free
65536 43193 34.09 41145 2048 42681 512

$

Figure 123. A Run of the piggy Program (Early Allocation, Pages Are Not Disclaimed)

Figure 124 on page 212 shows the piggy program calling disclaim while running
with the early paging space allocation policy. Notice that disclaim has no effect
when the program is running with this policy.

42 The process running the program is made to run with the early paging space allocation policy by placing PSALLOC=early in its
environment. The PSALLOC environment variable is discussed in 8.5, “Running with the Early Paging Space Allocation Policy”
on page 215.
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$ PSALLOC=early ./piggy 1

tpsb fpsb %used fpsbaw psbw fpsbak psbk start
65536 63209 3.55 61161 2048 62697 512

tpsb fpsb %used fpsbaw psbw fpsbak psbk malloc
65536 43193 34.09 41145 2048 42681 512

 tpsb fpsb %used fpsbaw psbw fpsbak psbk touch
65536 43184 34.11 41136 2048 42672 512

 tpsb fpsb %used fpsbaw psbw fpsbak psbk disclaim
65536 43193 34.09 41145 2048 42681 512

tpsb fpsb %used fpsbaw psbw fpsbak psbk free
65536 43193 34.09 41145 2048 42681 512

$

Figure 124. A Run of the piggy Program (Early Allocation, Pages Are Disclaimed)

8.4 Installing a SIGDANGER Signal Handler
As mentioned in 8.2, “Actions Taken by AIX When Free Paging Space Is Low” on
page 203, the SIGDANGER signal is sent to all user processes when the number of
free paging-space blocks falls below the paging-space warning threshold. There
are two reasons a process may want to install a signal handler for the SIGDANGER
signal. First, it may want to help the system out by disclaiming unneeded pages,
thus potentially freeing paging-space blocks. Secondly, having a signal handler
installed for SIGDANGER will make the process immune to being killed if the
number of free paging-space blocks falls below the paging-space kill threshold.

Figure 125 on page 213 shows the skeleton of a program that has installed a
signal handler for SIGDANGER solely for the purpose of avoiding being killed when
the system is low on free paging space. The signal handler does nothing, except
return. Notice that the signal handler is installed with the SA_RESTART flag
specified. Since the signal handler does not really do anything, having system
calls automatically restarted seems helpful. See 7.6, “Automatic Restart of
Interrupted System Calls” on page 175 for information about the automatic
restarting of interrupted system calls.
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#include <unistd.h>
#include <stdlib.h>
#include <signal.h>

void catch_danger(int signo)
{

/* Make the system believe we′ ll free something, but don′ t do it! */
return;

}

int main(int argc, char **argv)
{

struct sigaction sa;

sa.sa_handler = catch_danger;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;

(void) sigaction(SIGDANGER, &sa, NULL);

/* ... Do what the program does ... */

return 0;
}

Figure 125. Installing a Signal Handler to Avoid Termination Due to Low Paging Space

Figure 126 on page 214 shows the skeleton of a program that will attempt to do
something helpful when warned that the system is running low on free paging
space. The program may allocate some memory whose starting address and
length are recorded in the global variables not_important and
not_important_length. The example assumes the data stored in this memory
area is useful, but not essential. If the SIGDANGER signal is delivered to the
process, the catch_danger signal handler will check to see if the memory area
has been allocated. If it has, disclaim will be called to free any paging-space
blocks allocated to the area, and free will be called to free the data. The call to
disclaim may actually help the system. The call to free is of no importance to
the system, but may be important to the logic of the program43. This program
probably has some critical sections where the non-essential memory area is
allocated, initialized, and used. These critical sections would have to block the
SIGDANGER signal from being delivered temporarily so the signal handler does not
interfere with the program′s use of the memory area at a critical time. See 7.3,
“Signal Handlers and Critical Sections” on page 154 for details.

43 The free routine is not a signal-safe routine. Since free is called in the SIGDANGER signal handler, the program in Figure 126
on page 214 may run into trouble if any other routine that is not signal-safe is called outside of the SIGDANGER signal handler.
See 7.4, “Signal Handlers and Signal-Safe Routines” on page 156 for details.
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#include <unistd.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/shm.h>

char *not_important = NULL;
int not_important_length = 0;

void catch_danger(int signo)
{

if (not_important != NULL) {
(void) disclaim(not_important, not_important_length, ZERO_MEM);
free(not_important);
not_important = NULL;
not_important_length = 0;

}

return;
}

int main(int argc, char **argv)
{

struct sigaction sa;

sa.sa_handler = catch_danger;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;

(void) sigaction(SIGDANGER, &sa, NULL);

/* ... Do what the program does ... */

return 0;
}

Figure 126. Installing a Signal Handler to disclaim Memory

8.4.1 Advantages of a SIGDANGER Signal Handler
Installing a signal handler for the SIGDANGER signal to avoid termination when the
system runs low on paging space has the following advantages over running a
process with the early paging space allocation policy:

• Installing a signal handler for the SIGDANGER signal is straightforward when
compared to the details of arranging for a process to run with the early
paging space allocation policy.

• Handling the SIGDANGER signal does not involve allocating more paging-space
blocks, as running with the early paging space allocation policy may.

• Some programs may not run successfully with the early paging space
allocation policy, because too many paging-space blocks are required. For
example, programs that allocate large sparse arrays may not be able to
allocate the required number of paging-space blocks.
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• A daemon with an installed SIGDANGER signal handler will not pass on
immunity from termination due to low system paging space to a spawned
program. A child process would inherit the installed signal handler, but once
the child process called an exec routine, the disposition of the SIGDANGER
signal would return to the default. Contrast this with running a daemon with
the early paging space allocation policy. Such a daemon can prevent a
spawned program from inheriting immunity from termination when system
paging space is low, but in a more complicated manner.

This is an important consideration. The number of processes on a system
immune to termination when the system runs low on free paging space
should be kept to a minimum. If too many processes inherit this immunity,
the system may not be able to terminate enough processes to keep the
system running.

8.4.2 Disadvantages of a SIGDANGER Signal Handler
Once a signal handler that returns is installed in a process, the logic of the
program being run must account for the possibility of interrupted system calls.
Some system calls can be automatically restarted by the system, if the signal
handler is installed to allow for this. Other system calls are never automatically
restarted. The program must look for an indication that the system call has been
interrupted, and when it has, make the system call again. Chapter 7, “Signal
Handling” on page 141 discusses the issues pertaining to signal handlers in
detail.

8.5 Running with the Early Paging Space Allocation Policy
The paging space allocation policy of a process can change when the process
executes one of the exec routines. At that time, the kernel looks for the string
“ PSALLOC=early” in the process environment. If the string is found, the process
will proceed to run with the early paging space allocation policy. If the string is
not found (PSALLOC is not in the environment, it does not have a value, or its
value is anything other than “early”), the process will proceed to run with the
late paging space allocation policy.

If a process running a program should run with a particular paging space
allocation policy, the environment must be manipulated before a call to an exec
routine. Usually the environment is manipulated if the process should run with
the early paging space allocation policy, as the late paging space allocation
policy is the default. There are several ways to do this for a daemon. The
environment can be manipulated outside of the daemon program, or within the
daemon program. Manipulating the environment outside of the program is
easier, but manipulating the environment within the program allows for more
control over which processes run with which paging space allocation policy. For
example, a program could ensure that the process running it is running with the
early paging space allocation policy, and any child processes created by the
program run with the late paging space allocation policy.
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8.5.1 Determining the Paging Space Allocation Policy of a Process
The paging space allocation policy under which a process is running can be
determined by looking at the process flags for the process. The sys/proc.h
header file defines the process flag values. The process flag that indicates
whether a process is running with the early paging space allocation policy is
named SPSEARLYALLOC. Its value in AIX 4.1.2 is 0x04000000; the value has changed
from release to release. If this flag is set for a process, the process is running
with the early paging space allocation policy. If this flag is not set for a process,
the process is running with the late paging space allocation policy.

The simplest way to see the process flags for a process is through the ps
command. The example in Figure 127 shows two SRC subsystems being
started. The subsys01 subsystem forces itself to run with the early paging space
allocation policy44, while the subsys02 subsystem runs with the late paging space
allocation policy by default45. The grep command output shows that the value of
the SPSEARLYALLOC flag on this system is 0x04000000. The ps command is
executed using the -p and -l flags to display a long listing for the two processes
running the subsystems. The process flags are in the first field of the ps output.
It can be seen that the subsys01 process is running with the early paging space
allocation policy, and the subsys02 process is running with the late paging space
allocation policy.

# startsrc -s subsys01
0513-059 The subsys01 Subsystem has been started. Subsystem PID is 8434.

# startsrc -s subsys02
0513-059 The subsys02 Subsystem has been started. Subsystem PID is 8694.

# grep SPSEARLYALLOC /usr/include/sys/proc.h
#define SPSEARLYALLOC 0x04000000 /* allocates paging space early */

# ps -p 8434,8694 -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

 4340401 A 0 8434 3946 0 60 20 15335 164 - 0:00 subsys01
240001 A 0 8694 3946 0 60 20 18338 104 - 0:00 subsys02

Figure 127. Determining the Paging Space Allocation Policy of a Process

8.5.1.1 A Problem with the SPSEARLYALLOC Process Flag
The preceding paragraphs describe how the SPSEARLYALLOC process flag can be
used to determine if a process is running with the early paging space allocation
policy or not. However, in AIX 4.1.2, and presumably in previous versions of AIX,
there is a condition under which a process will be running with the early paging
space allocation policy, but the SPSEARLYALLOC flag will not be set. The condition
occurs when a process running with the early paging space allocation policy
creates a child process, and the child process has not issued exec. The child
process inherits use of the early paging space allocation policy from the parent

44 The subsys01 subsystem can force itself to run with the early paging space allocation policy by using the techniques described
in 8.5.4, “Setting PSALLOC in a Daemon” on page 224.

45 The subsys02 subsystem runs with the late paging space allocation policy if and only if PSALLOC=early is not in the
/etc/environment file, and is not set in the subsys02 SRC definition, and is not set by the subsys02 program itself.
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process. However, the SPSEARLYALLOC flag is not set in the process flags for the
child process. Once the child process calls an exec function, the state of the
SPSEARLYALLOC process flag and the paging space allocation policy under which
the process is running will be in agreement.

In AIX release 4.1.2 and earlier, a process running with the early paging space
allocation policy, but without SPSEARLYALLOC set in its process flags, allocates
paging-space blocks when pages are allocated, but is not protected from
termination when the system runs low on paging space. This problem has been
reported to AIX development. They recognized it as a problem, and fixed it in
releases after AIX 4.1.246.

Even without a fix for this problem, the SPSEARLYALLOC process flag is still useful,
because there is a process flag that indicates if the process has issued exec.
This flag is named SEXECED, and has a value of 0x00200000 on AIX 4.1.2. If this
flag is set for a process then the process has issued exec, and the state of the
SPSEARLYALLOC flag correctly indicates the paging space allocation policy being
used by the process. If the SEXECED flag is not set for a process, the
SPSEARLYALLOC flag will not be set, the paging space allocation policy under which
the process is running cannot be determined from the process flags, and the
process is a candidate for termination if the system runs low on paging space
(unless the process has installed a signal handler for the SIGDANGER signal).

Figure 128 on page 218 presents some examples. First, the subsys01 and
subsys02 subsystems are started with the SRC. A couple of grep commands
show the values of the SPSEARLYALLOC and SEXECED flags. The output of the ps
command shows that both the subsys01 and subsys02 processes have issued
exec. Therefore, the state of the SPSEARLYALLOC flag can be used to determine the
paging space allocation policies under which the processes are running. The
subsys01 process is running with the early paging space allocation policy. The
subsys02 process is running with the late paging space allocation policy. Next,
the subsys02 subsystem is stopped with stopsrc, so it can be restarted from the
shell command line.

When the subsys02 daemon is started from the shell command line, the
PSALLOC=early string is specified with the shell command that starts the daemon.
The shell creates a child process, places PSALLOC=early in the environment of the
child process, and then calls exec for the subsys02 program in the child process.
Thus, the child process is running with the early paging space allocation policy.
The process created by the shell recognizes it has been started by a shell.
Therefore, it creates a child process of its own, and then it (the parent process)
exits47. The second child process continues to run as the subsys02 daemon. The
output of the next ps command shows that the subsys02 daemon process has not
issued exec. Therefore, the output of this command does not indicate which
paging space allocation policy is used by the process. All that can be said for
certain, based solely on the ps output, is that the process is not protected from
termination when the system runs low on paging space if it has not installed a
SIGDANGER signal handler. Knowledge of how the subsys02 program is written and
how it was started leads to the conclusion that it is running with the early paging
space allocation policy.

46 This problem was first recognized by Larry Brenner, and reported to AIX development by him.

47 For an explanation of why this is done, see 3.3, “Migrate the Daemon to Another Process” on page 25.
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# startsrc -s subsys01
0513-059 The subsys01 Subsystem has been started. Subsystem PID is 8434.

# startsrc -s subsys02
0513-059 The subsys02 Subsystem has been started. Subsystem PID is 8694.

# grep SPSEARLYALLOC /usr/include/sys/proc.h
#define SPSEARLYALLOC 0x04000000 /* allocates paging space early */

# grep SEXECED /usr/include/sys/proc.h
#define SEXECED 0x00200000 /* process has exec′ d */

# ps -p 8434,8694 -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

 4340401 A 0 8434 3946 0 60 20 15335 164 - 0:00 subsys01
240001 A 0 8694 3946 0 60 20 18338 104 - 0:00 subsys02

# stopsrc -s subsys02
0513-044 The stop of the subsys02 Subsystem was completed successfully.

# PSALLOC=early /u/agar/daes/subsys02 -l /tmp/subsys02

# ps -el | grep subsys02
140401 A 0 10268 1 0 60 20 8388 216 - 0:00 subsys02

Figure 128. Looking at the SPSEARLYALLOC and SEXECED Flags

8.5.2 Setting PSALLOC with the SRC
The definition of an SRC subsystem does not allow for the specification of
environment variable values. If it did, a subsystem could be defined such that
PSALLOC was set to early in the subsystem′s environment, causing the subsystem
to run with the early paging space allocation policy. The environment with which
an SRC subsystem runs can be influenced by the contents of the
/etc/environment file and any environment values specified on the startsrc
command. Specifying PSALLOC=early in the /etc/environment file would cause all
processes on the system to run with the early paging space allocation policy;
this is probably not desirable. Figure 129 shows an example of starting a
subsystem and using the startsrc command to cause it to run with the early
paging space allocation policy. A problem with this approach is that if the user
of the startsrc command does not specify the allocation policy, the subsystem
will run with the late paging space allocation policy.

# startsrc -s subsys03 -e ″PSALLOC=early″
0513-059 The subsys03 Subsystem has been started. Subsystem PID is 8198.

# ps -p 8198 -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

 4340401 A 0 8198 3946 0 60 20 10250 160 - 0:00 subsys03

Figure 129. Using startsrc to Specify the Early Paging Space Allocation Policy
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An SRC subsystem could be defined such that when it is started through the
SRC, a shell script is run. The shell script could set PSALLOC to early in the
environment, and then call exec for the daemon program. It is important that the
process started by the SRC continue running. It would be incorrect for the shell
script to spawn another process to run the daemon program, and then exit. The
SRC would interpret the termination of the shell script process as the
termination of the subsystem. Figure 130 on page 220 illustrates this approach.
The subsys04 subsystem is defined such that the subsys04.init script is run when
the subsystem is started. The shell script just sets up PSALLOC in the
environment, and calls exec for the daemon program, subsys04. Any parameters
passed to the shell script are passed on to the daemon program, through “$@. ”
The output of the ps command shows that the subsys04 daemon program is
running in the process started by the SRC, and that process is running with the
early paging space allocation policy.
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# cat /usr/lpp/somelpp/bin/subsys04.init
#!/bin/ksh

export PSALLOC=early
exec /usr/lpp/somelpp/bin/subsys04 ″$@″

# mkssys -s subsys04 -u 0 -p /usr/lpp/somelpp/bin/subsys04.init \
-a ″-s /tmp/subsys04″ -i /dev/null -o /dev/null -e /dev/null

0513-071 The subsys04 Subsystem has been added.

# odmget -q ″subsysname = ′ subsys04′ ″  SRCsubsys

SRCsubsys:
subsysname = ″subsys04″
synonym = ″″
cmdargs = ″-s /tmp/subsys04″
path = ″ /usr/lpp/somelpp/bin/subsys04.init″
uid = 0
auditid = 0
standin = ″ /dev/null″
standout = ″ /dev/null″
standerr = ″ /dev/null″
action = 2
multi = 0
contact = 3
svrkey = 0
svrmtype = 0
priority = 20
signorm = 0
sigforce = 0
display = 1
waittime = 20
grpname = ″″

# startsrc -s subsys04
0513-059 The subsys04 Subsystem has been started. Subsystem PID is 8292.

# lssrc -s subsys04
Subsystem Group PID Status
 subsys04 8292 active

# ps -p 8292 -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

 4340401 A 0 8292 3946 0 60 20 19219 164 - 0:00 subsys04

Figure 130. Using a Shell Script to Add to a Daemon ′s Environment

When a shell script is run as part of starting a daemon, care should be taken
with redirection of I/O. Redirection to or from a terminal device that is not a
controlling terminal of a session may cause the process to acquire the terminal
as a controlling terminal. See 3.4, “Disassociate the Daemon from Its
Controlling Terminal” on page 25 for information about controlling terminals and
how to lose one.

A shell script can also be used to help bring up a daemon that is started from
the init process, or from the inetd process.
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There is another way to define an SRC subsystem such that it runs with the early
paging space allocation policy. This is described in section 8.5.3, “Setting
PSALLOC in a System File” on page 221.

8.5.3 Setting PSALLOC in a System File
When a program is executed from a Korn shell command line, environment
variable values can be specified before the command name. The specified
environment variable values are placed in the environment of the process
running the command; the values are not put in the environment of the shell. An
example is shown in Figure 131. If a shell does not support this behavior, the
env command can be used to add values to a process environment and then exec
another program. This is also shown in Figure 131.

# cat /tmp/program
echo $TEST1
echo $TEST2

# echo $TEST1

# echo $TEST2

# TEST1=hello TEST2=world /tmp/program
hello
world

# echo $TEST1

# echo $TEST2

# /bin/env TEST1=hello TEST2=world /tmp/program
hello
world

# echo $TEST1

# echo $TEST2

#

Figure 131. Using the env Command to Add to a Program ′s Environment

When a system configuration file describes how a daemon is started, the env
command can be used to place values in the daemon′s environment. This can
be used to make a daemon run with the early paging space allocation policy.
This approach can be taken with the definition of an SRC subsystem in the ODM,
with an entry in the /etc/inittab file, and with an entry in the inetd configuration
file.

A subsystem might normally be defined to the SRC with an mkssys command
similar to that shown in Figure 132 on page 222. If the subsys05 subsystem
should always run with the early paging space allocation policy, the subsystem
could be defined as shown in Figure 133 on page 222. Here, the program
specified with the -p parameter is /bin/env. The arguments specified with the -a
parameter are composed of the specification of the PSALLOC=early string followed
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by the path name of the daemon program and the arguments to be passed to
that program. The ps command in Figure 133 on page 222 shows that the
daemon does run with the early paging space allocation policy.

# mkssys -s subsys05 -u 0 -p /usr/lpp/somelpp/subsys05 \
-a ″-l /tmp/subsys05″ -i /dev/null -o /dev/null -e /dev/null

Figure 132. A Typical Definition of an SRC Subsystem

# mkssys -s subsys05 -u 0 -p /bin/env \
-a ″PSALLOC=early /usr/lpp/somelpp/subsys05 -l /tmp/subsys05″ \
-i /dev/null -o /dev/null -e /dev/null

# odmget -q ″subsysname = ′ subsys05′ ″  SRCsubsys

SRCsubsys:
subsysname = ″subsys05″
synonym = ″″
cmdargs = ″PSALLOC=early /usr/lpp/somelpp/subsys05 -l /tmp/subsys05″
path = ″ /bin/env″
uid = 0
auditid = 0
standin = ″ /dev/null″
standout = ″ /dev/null″
standerr = ″ /dev/null″
action = 2
multi = 0
contact = 3
svrkey = 0
svrmtype = 0
priority = 20
signorm = 0
sigforce = 0
display = 1
waittime = 20
grpname = ″″

# startsrc -s subsys05
0513-059 The subsys05 Subsystem has been started. Subsystem PID is 6690.

# ps -p 6690 -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

 4340401 A 0 6690 3946 0 60 20 18378 208 - 0:00 subsys05

Figure 133. Using the env Program in an SRC Subsystem Definit ion

A daemon to be started by init, without the SRC, might be defined in
/etc/inittab in a manner similar to the definition of subsys06 in Figure 134 on
page 223. If the subsys06 daemon should always run with the early paging space
allocation policy, the daemon could be defined as shown in Figure 135 on
page 223. Here, the program specified to run is /bin/env. The arguments
specified include the PSALLOC=early string followed by the path name of the
daemon program and the arguments to be passed to that program. The ps
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command in Figure 135 on page 223 shows that the daemon does run with the
early paging space allocation policy.

# grep subsys06 /etc/inittab
subsys06:2:respawn:/usr/lpp/somelpp/subsys06 -l /tmp/subsys06

Figure 134. A Typical inittab Entry for a Daemon

# grep subsys06 /etc/inittab
subsys06:2:respawn:/bin/env PSALLOC=early /usr/lpp/somelpp/subsys06 -l /tmp/subsys06

# ps -el | grep subsys06
 4340401 A 0 6752 1 2 61 20 15375 204 - 0:00 subsys06

Figure 135. An inittab Entry Using the env Command

A daemon to be started by inetd might be defined in /etc/inetd.conf in a
manner similar to the definition of subsys07 in Figure 136. If the subsys07
daemon should always run with the early paging space allocation policy, the
daemon could be defined as shown in Figure 137. Here, the program specified
to run is /bin/env. The arguments specified include the PSALLOC=early string
followed by the path name of the daemon program and the arguments to be
passed to that program. Recall that in the inetd configuration file, the first
argument specified must be the name of the program. In Figure 137, that name
is env. The ps command in Figure 137 is executed after a client requests the
service provided by subsys07; its output shows that the daemon does run with the
early paging space allocation policy. Notice that the lssrc output for subsys07 is
not particularly useful.

# grep subsys07 /etc/inetd.conf
subsys07 stream tcp nowait root /usr/lpp/somelpp/subsys07 subsys07 -l /tmp/subsys07

Figure 136. A Typical inetd.conf Entry for a Daemon

# grep subsys07 /etc/inetd.conf
subsys07 stream tcp nowait root /bin/env env PSALLOC=early /usr/lpp/somelpp/subsys07 -l /tmp/sub
sys07

# lssrc -ls inetd | grep subsys07
 subsys07 /bin/env env PSALLOC=early active

# ps -el | grep subsys07
 4240001 A 0 8108 5524 0 60 20 1c0fc 196 237878 - 0:00 subsys07

Figure 137. An inetd.conf Entry Using the env Command
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8.5.4 Setting PSALLOC in a Daemon
A program may change the paging space allocation policy under which it runs.
There are several advantages of doing this in the program, instead of assuming
the PSALLOC environment variable is set properly outside of the program. First,
the program can ensure it runs with the desired paging space allocation policy,
regardless of how it was started. Second, the program can influence the paging
space allocation policy used by programs it spawns. Third, the program can
compensate for the problem discussed in 8.5.1.1, “A Problem with the
SPSEARLYALLOC Process Flag” on page 216.

The subsection titled “Programming Interface” of the section titled
“Understanding Paging Space Allocation Policies” in Chapter 7, “Paging Space
and Virtual Memory” in AIX Version 4.1: System Management Guide: Operating
System and Devices, SC23-2525, recommends that a program wanting to run with
a specific paging space allocation policy take the following steps:

• Examine the value of the PSALLOC environment variable.

• If the PSALLOC environment variable is not set to a value consistent with the
desired paging space allocation policy, set the variable, and call an exec
routine specifying the program being run and the arguments passed to the
program. This will cause the process to run the program with the desired
paging space allocation policy. As the program runs again, it will find the
PSALLOC environment variable to be set to a value consistent with the desired
paging space allocation policy.

• If the PSALLOC environment variable is set to a value consistent with the
desired paging space allocation policy, no action is necessary to change the
paging space allocation policy under which the process is running.

These steps will work correctly in many cases. However, the steps assume the
process has executed an exec routine before these steps are taken. As
mentioned in section 3.3, “Migrate the Daemon to Another Process” on page 25,
it is not unusual for a daemon program to create a child process that will not call
an exec routine. If a process has not executed an exec routine, the paging space
allocation policy under which the process is running is not determined by the
value of PSALLOC, but inherited from the parent process. The paging space
allocation policy inherited from the parent process may not be consistent with
the value of PSALLOC inherited from the parent process. It is possible that the
parent process changed the value of the PSALLOC environment variable without
calling an exec routine afterward, in order to influence the paging space
allocation policy under which its child processes will run after they call exec.

These recommended steps also suffer from the problem described in 8.5.1.1, “A
Problem with the SPSEARLYALLOC Process Flag” on page 216. If a process is
running with the early paging space allocation policy, and PSALLOC=early is in the
environment of the process, and the process then creates a child process, the
child process inherits the paging space allocation policy and the PSALLOC
environment variable from its parent. Therefore, the child process is running
with the early paging space allocation policy, and the value of PSALLOC in its
environment is consistent with that policy. If the child process does not exec
another program, but runs the inherited program, and then follows the steps
previously shown, it will do nothing to influence the paging space allocation
policy under which it runs. The problem with doing nothing is that the
SPSEARLYALLOC flag will not be set in the process flags. Therefore, the child
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process may be a target for termination when the system is low on paging
space, even though it runs with the early paging space allocation policy.

A program may influence the paging space allocation policy with which it runs in
a manner that overcomes the difficulties discussed above. The key is to
consider both the value of the PSALLOC environment variable and the value of the
process flags. The steps involved are the following:

 1. Get the value of the process flags.

 2. If the SEXECED process flag is set, indicating the process has called an exec
routine, and the value of the SPSEARLYALLOC flag is consistent with the desired
paging space allocation policy, then the process is running with the desired
paging space allocation policy. In this case there is nothing to do; skip the
remaining steps.

 3. If this step is reached, either the process has not called an exec routine, in
which case the paging space allocation policy under which the process is
running cannot be determined, or the process has called an exec routine and
the process is not running with the desired paging space allocation policy.
In either case, proceed to the next step.

 4. Get the current value of the PSALLOC environment variable.

 5. If the value of the PSALLOC environment variable is consistent with the desired
paging space allocation policy, and the process flags indicate the process
has called an exec routine, something has gone wrong; exit.

 6. If the value of the PSALLOC environment variable is not consistent with the
desired paging space allocation policy, set the value such that it is
consistent with the desired policy.

 7. Call an exec routine specifying the program being run and the arguments
passed to the program. This will cause the process to run the program with
the desired paging space allocation policy. As the program runs again, it
will find that the process flags indicate the process has called an exec
routine, and the value of the SPSEARLYALLOC flag is consistent with the desired
paging space allocation policy. The program will then take no other action
with regard to the paging space allocation policy under which the process
runs.

Once a program has ensured it is running under the desired paging space
allocation policy, it may want to ensure that programs spawned by it run with a
certain paging space allocation policy. For example, a daemon may want to run
with the early paging space allocation policy, but it may want programs spawned
by it to run with the late paging space allocation policy. The program can
arrange for this by changing the value of PSALLOC in its environment to some
value other than early, after the previously listed steps are executed. If the
program then creates a child process that issues exec for another program, the
child process will start running with the early paging space allocation policy, but
will switch to the late paging space allocation policy when the exec routine is
called.

The daemon support routines include routines similar to those shown in
Figure 138 on page 226. These routines ensure the calling process is running
with the desired paging space allocation policy, and that any programs spawned
by the daemon process will run with the late paging space allocation policy.
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#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <procinfo.h>
#include <sys/proc.h>

int check_psalloc_env(int early);
int set_psalloc_env(int early);
int get_process_flags(unsigned long *process_flags);
int check_psalloc_flag(unsigned long pflags, int early);

int set_psalloc(int early, const char *prog_path, char * const argv[])
{

int rc;
unsigned long process_flags;

if ((rc = get_process_flags(&process_flags)) != 0)
return rc;

if (((process_flags & SEXECED) != SEXECED) ||
(!check_psalloc_flag(process_flags, early))) {

if (check_psalloc_env(early)) {
if ((process_flags & SEXECED) == SEXECED) {

/* Log an error message */
return 1;

}
} else {

if ((rc = set_psalloc_env(early)) != 0) {
return rc;

}
}

execv(prog_path, argv);

/* Log message about execv error; include errno value */
return 1;

}

if (!check_psalloc_env(0)) {
if ((rc = set_psalloc_env(0)) != 0) {

return rc;
}

}

return 0;
}

Figure 138 (Part 1 of 3). Routines to Ensure a Specified Paging Space Allocation Policy
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char early_alloc_string[] = ″PSALLOC=early″ ;
char late_alloc_string[] = ″PSALLOC=late″ ;

int check_psalloc_env(int early)
{

char *envptr;

envptr = getenv(″PSALLOC″ ) ;

if ((envptr != NULL) && (strcmp(envptr, ″early″) == 0)) {
return (early != 0);

} else {
return (early == 0);

}

}

int set_psalloc_env(int early)
{

char *envptr;

if (early) {
envptr = early_alloc_string;

} else {
envptr = late_alloc_string;

}

if (putenv(envptr) != 0) {
/* Log message about putenv error; include errno value */
return 1;

}

if (!check_psalloc_env(early)) {
/* Log an error message */
return 1;

}

return 0;
}

Figure 138 (Part 2 of 3). Routines to Ensure a Specified Paging Space Allocation Policy
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int get_process_flags(unsigned long *process_flags)
{

struct procsinfo pi;
pid_t pid;
pid_t scratch_pid;

pid = getpid();
scratch_pid = pid;

if (getprocs(&pi, sizeof pi, NULL, 0, &scratch_pid, 1) != 1) {
/* Log message about getprocs error; include errno value */
return 1;

}

if ((pi.pi_state == SNONE) || (pi.pi_state == SIDL) ||
(pi.pi_state == SZOMB) || (pi.pi_pid != pid)) {
/* Log an error message */
return 1;

}

*process_flags = pi.pi_flags;

return 0;
}

int check_psalloc_flag(unsigned long pflags, int early)
{

if (early) {
return ((pflags & SPSEARLYALLOC) == SPSEARLYALLOC);

} else {
return ((pflags & SPSEARLYALLOC) != SPSEARLYALLOC);

}

}

Figure 138 (Part 3 of 3). Routines to Ensure a Specified Paging Space Allocation Policy

Figure 138, part �1� shows the set_psalloc routine. The routine takes three
arguments. The first argument, early, is a flag that indicates whether the early
paging space allocation policy is desired. The second argument is the path
name of the program being executed, and the third argument is a pointer to the
arguments passed to the program when it was invoked. The set_psalloc routine
calls the get_process_flags routine to get the process flags for the process. If
the SEXECED flag is not set in the process flags, or the SPSEARLYALLOC flag is not set
to a value consistent with the desired paging space allocation policy (determined
by a call to check_psalloc_flag), the set_psalloc routine will have to set the
paging space allocation policy for the process. The routine calls
check_psalloc_env to determine if PSALLOC is set to a value consistent with the
desired paging space allocation policy. If it is not, the value of PSALLOC is
changed by a call to set_psalloc_env. Once PSALLOC has an appropriate value,
the execv routine is called to re-execute the program. As the program is
re-executed, it will call set_psalloc, which will again call get_process_flags to get
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the process flags. This time it should find that the SEXECED flag is set, indicating
the process has called an exec routine, and the SPSEARLYALLOC flag is now set to a
value consistent with the desired paging space allocation policy. Once the
calling process is running with the desired paging space allocation policy, the
set_psalloc routine sets the PSALLOC variable to a value consistent with the late
paging space allocation policy. This is done with calls to check_psalloc_env and
set_psalloc_env. Any programs spawned by this process will run with the late
paging space allocation policy.

Figure 138, part �2� shows the check_psalloc_env and set_psalloc_env routines.
The check_psalloc_env routine receives an argument, early, that indicates if the
early paging space allocation policy is desired. The routine gets the value of the
PSALLOC environment variable with a call to getenv. The check_psalloc_env routine
then returns 0 if the value of the environment variable is not consistent with the
desired paging space allocation policy, or 1 if the value is consistent with the
desired policy. The set_psalloc_env routine receives the same argument as
check_psalloc_env. The routine calls putenv to set the PSALLOC environment
variable to a value consistent with the desired paging space allocation policy. It
then calls check_psalloc_env to make sure the environment variable has been set
correctly.

Figure 138, part �3� shows the get_process_flags and check_psalloc_flag
routines. The get_process_flags routine calls the getprocs routine to get
information from the kernel process table about the process executing the
routine. The process flags are returned to the caller of get_process_flags. The
check_psalloc_flag routine determines if the value of the SPSEARLYALLOC flag in the
process flags is consistent with the desired paging space allocation policy.

8.5.5 Advantages of the Early Paging Space Allocation Policy
The advantage of running a process with the early paging space allocation policy
to avoid termination when the system is low on paging space is that the
disadvantages of installing a signal handler for the SIGDANGER signal are avoided.
See 8.4.2, “Disadvantages of a SIGDANGER Signal Handler” on page 215.

8.5.6 Disadvantages of the Early Paging Space Allocation Policy
The disadvantage of running a process with the early paging space allocation
policy to avoid termination when the system is low on paging space is that the
advantages of installing a signal handler for the SIGDANGER signal are not
enjoyed. See 8.4.1, “Advantages of a SIGDANGER Signal Handler” on page 214.
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Chapter 9. Ens uring Exclusivity

It is not uncommon for a daemon to have some sort of requirement relating to
exclusivity. For example, a daemon program may be designed such that at any
time, there should be only one process running the program on a system. On a
control workstation associated with a partitioned RS/6000 SP system, it may be
necessary to have multiple processes running the same daemon, one for each
RS/6000 SP partition.

The SRC, inetd, and init include mechanisms to enforce exclusivity. An SRC
subsystem can be defined to allow or not allow multiple instances. The value of
the Wait/NoWait field in the inetd configuration file entry for an inetd daemon
determines whether multiple instances of the daemon can run at once. An entry
for a daemon in /etc/inittab causes one instance of the daemon to be started.
These mechanisms are useful and should be used, as appropriate. However,
they can fail. The SRC mechanism fails whenever srcmstr is terminated and
respawned. The inetd mechanism fails when inetd is terminated and restarted.
None of the mechanisms prevent other instances of a daemon from being started
from a shell.

9.1 Limitations of System Methods to Ensure Exclusivity
Normally, when a daemon is defined in the inetd configuration file with the value
of wait in the Wait/Nowait field, inetd will allow only one instance of the daemon
to run at a time. However, whenever the inetd daemon terminates, it loses track
of the daemons it had spawned. If another instance of inetd is started, it is
possible that more than one instance of a daemon defined with the wait value
will be running at the same time. This is illustrated in Figure 139 on page 232.
The grep command output shows that wait is specified for the talkd daemon on
the sysA system. A talk session is requested from the sysB system to the sysA
system. The two ps commands run on sysA show that the talkd daemon has
been spawned by the inetd daemon. The inetd daemon is then killed. The next
two ps commands show that the inetd daemon is not running on sysA, and the
talkd daemon that had been started by inetd has been inherited by the init
process. Next, the startsrc command is used to restart the inetd daemon. The
next two ps commands show that inetd is now running, and the talkd daemon
inherited by the init process continues to run. Next, another talk session is
requested, this time from the sysC system. The final ps command shows that
two talkd daemons are running at the same time; one talkd daemon had been
started from the first inetd process and inherited by init, and the second talkd
daemon was started by the new inetd process.
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[sysA] # grep talkd /etc/inetd.conf
#talk dgram udp wait root /usr/sbin/talkd talkd
ntalk dgram udp wait root /usr/sbin/talkd talkd

[sysB] # talk root@sysA

[sysA] # ps -el | grep talk
240001 A 0 15174 16142 0 60 20 47e4 160 2377d8 - 0:00 talkd

[sysA] # ps -el | grep inetd
240001 A 0 16142 3946 0 60 20 57e5 212 - 0:00 inetd

[sysA] # kill -9 16142

[sysA] # ps -el | grep inetd

[sysA] # ps -el | grep talk
240001 A 0 15174 1 0 60 20 47e4 160 2377d8 - 0:00 talkd

[sysA] # startsrc -s inetd
0513-059 The inetd Subsystem has been started. Subsystem PID is 7522.

[sysA] # ps -el | grep inetd
 240001 A 0 7522 3946 19 69 20 6806 196 - 0:00 inetd

[sysA] # ps -el | grep talk
240001 A 0 15174 1 0 60 20 47e4 160 2377d8 - 0:00 talkd

[sysC] # talk root@sysA

[sysA] # ps -el | grep talk
 240001 A 0 8812 7522 0 60 20 1a75a 160 23773c - 0:00 talkd
240001 A 0 15174 1 0 60 20 47e4 160 2377d8 - 0:00 talkd

Figure 139. Starting Two Instances of the talkd Daemon

A similar problem is associated with the SRC. When an SRC subsystem is
defined, you can specify whether multiple instances of the subsystem should run
at the same time. If multiple instances are not allowed for a subsystem, and the
SRC is used to attempt to start a second instance, the SRC displays an error
message and will not start the second instance of the subsystem. However, like
inetd, the SRC daemon, srcmstr, loses track of the daemons it has spawned if it
terminates and is restarted. This is illustrated in Figure 140 on page 233. The
odmget command shows that the inetd subsystem is defined such that multiple
instances should not be allowed to run at the same time (the value of multi is 0).
The ps command shows that a process is running the inetd daemon. Next, the
startsrc command is issued, in an attempt to start another inetd daemon. The
startsrc command displays an error message indicating multiple instances of
the inetd subsystem are not allowed. Next, the kill command is used to
terminate the srcmstr daemon. The next two ps commands show that the
srcmstr daemon was respawned (notice the change in the PID), and the inetd
daemon that had been running has now been inherited by the init process.
Next, the startsrc command is again used to attempt to start a second inetd
process. This time the attempt succeeds. A ps command shows that there are
now two inetd processes running on the system.
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# odmget -q ″subsysname = ′ inetd′ ″  SRCsubsys

SRCsubsys:
subsysname = ″inetd″
synonym = ″″
cmdargs = ″″
path = ″ /usr/sbin/inetd″
uid = 0
auditid = 0
standin = ″ /dev/console″
standout = ″ /dev/console″
standerr = ″ /dev/console″
action = 2
multi = 0
contact = 3
svrkey = 0
svrmtype = 0
priority = 20
signorm = 0
sigforce = 0
display = 1
waittime = 20
grpname = ″tcpip″

# ps -el | grep inetd
 240001 A 0 7522 3946 0 60 20 6806 212 - 0:00 inetd

# startsrc -s inetd
0513-029 The inetd Subsystem is already active.
Multiple instances are not supported.

# ps -el | grep srcmstr
240001 A 0 3946 1 0 60 20 10110 332 - 0:00 srcmstr

# kill -9 3946

# ps -el | grep srcmstr
240001 A 0 4016 1 1 60 20 1e13e 220 - 0:00 srcmstr

# ps -el | grep inetd
240001 A 0 7522 1 0 60 20 6806 212 - 0:00 inetd

# startsrc -s inetd
0513-059 The inetd Subsystem has been started. Subsystem PID is 16318.

# ps -el | grep inetd
240001 A 0 7522 1 0 60 20 6806 212 - 0:00 inetd
240001 A 0 16318 4016 8 64 20 1801 196 - 0:00 inetd

Figure 140. Starting Two Instances of the inetd Daemon through the SRC

Even if the srcmstr or inetd daemons are not terminated and restarted, they
cannot prevent another instance of a daemon from being started from the
command line. For example, even though the inetd daemon is defined to be an
SRC subsystem which does not allow multiple instances, another instance of the
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inetd daemon can be started from the command line. This is illustrated in
Figure 141 on page 234.

$ lssrc -a | grep inetd
inetd tcpip 5524 active

$ ps -el | grep inetd
240001 A 0 5524 3946 0 60 20 12112 212 - 0:00 inetd

$ startsrc -s inetd
0513-029 The inetd Subsystem is already active.
Multiple instances are not supported.

$ /usr/sbin/inetd

$ ps -el | grep inetd
240001 A 0 5524 3946 0 60 20 12112 212 - 0:00 inetd
40001 A 0 7142 1 9 64 20 191b9 208 - 0:00 inetd

Figure 141. Starting a Second Instance of the inetd Daemon from the Command Line

9.2 Ensuring Exclusivity Within a Daemon
A daemon should use the capabilities of the system to help ensure that the
exclusivity requirements of the daemon are met. Even with the flaws previously
discussed, these capabilities are useful. For example, the advantage of using
the capabilities of the SRC in this regard is that the SRC can deliver a message
to the originator of the startsrc command. However, a daemon serious about
exclusivity should also determine itself if a new instance of the daemon should
be permitted. The advantage of the daemon checking for exclusivity problems is
that the daemon check can be independent of how the daemon was started.
Unlike the SRC, when a daemon detects a problem, it can only log an error
message and terminate the process. The originator of the daemon may not see
the logged error message.

There are several ways a daemon program might determine if multiple instances
of the daemon program are running. Two generic techniques that come to mind
are file locking and System V semaphores. A daemon program could use fcntl
to attempt to get an advisory lock on a file when the daemon program is started.
If a process running the daemon program can get the lock, it can hold the lock
for as long as it is running. If a process running the daemon program cannot get
the lock, that is an indication that another process is running the daemon; the
process without the lock should log an error message, and terminate. What file
should be locked? It may be convenient to lock the file holding the daemon
program executable48. A lock on a file obtained through fcntl is released
automatically when the process holding the lock terminates. This is an
important feature; if a daemon terminates unexpectedly, it will automatically
release the lock that might prevent other processes from running the daemon
program.

48 However, the NFS problem discussed in the next paragraph might be more likely to happen if this file is used.

234 Writing Reliable AIX Daemons 



A problem with using fcntl to ensure daemon exclusivity is that the lock is
recognized across systems if the file is in a file system mounted by NFS or
exported using NFS. If the file being locked by the daemon is shared across
systems using NFS, a daemon running on one system could prevent the daemon
from running on another system. This is usually not desirable. The next
technique discussed does not suffer from this problem.

A technique similar to file locking is to use a System V semaphore. A daemon
program could attempt to lock a semaphore when the daemon program is
started. If a process running the daemon program can lock the semaphore, it
can hold the lock on the semaphore for as long as it is running. If a process
running the daemon program cannot lock the semaphore, that is an indication
that another process is running the daemon; the process without the lock should
log an error message, and terminate. It is common to generate a semaphore
key from a file name. What file name should be used? It may be convenient to
use the name of the file holding the daemon program executable. When a
semaphore is used properly, a lock on the semaphore will be removed when the
process holding the lock terminates. As described in the fcntl discussion, this
is an important attribute for daemons using semaphores to enforce exclusivity.

Semaphores are not shared across systems. Even if the file used to generate a
semaphore key is shared across systems using NFS, each system will generate
its own semaphore based on the key. A daemon running on one system would
not prevent the daemon from running on another system.

The daemon support routines allow a daemon to enforce exclusivity
requirements through the dae_init_exclusive and dae_init routines. The
daemon support routines use System V semaphores to enforce the exclusivity
requirements. These routines include code similar to that shown in Figure 142
on page 236. The code in get_excl is executed when a daemon initializes itself.
The routine is passed two parameters,excl_path and excl_ID. The values passed
through these two parameters are used in the call to ftok that generates the key
of the semaphore that will be used by the process executing the routine.
Different values for excl_path and excl_ID will generate different keys. These
values can be used to control the degree of exclusivity needed. For example, if
only one process should be able to run a particular daemon program at a time,
all processes running that daemon program should pass identical parameters to
get_excl. Each daemon program should use a different value for excl_path, so
they do not interfere with each other. If one process per RS/6000 SP system
partition should be able to run a specific daemon program, all calls to get_excl
from that daemon program might use the same value for excl_path, to represent
the daemon program, but different values might be used for excl_ID, to
represent the RS/6000 SP partition for which the daemon would run.
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#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>

static key_t sem_key; /* Semaphore key */
static int sem_ID; /* Semaphore ID */
static pid_t sem_PID_lock = (pid_t)-1; /* Process that locked semaphore */

void release_excl(void)
{

if (getpid() == sem_PID_lock) {
(void) semctl(sem_ID, 0, IPC_RMID, 0);

}
return;

}

int get_excl(const char *excl_path, char excl_ID)
{
 int sem_perms = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH;

struct sembuf sem_ops[2] = {{0, 0, IPC_NOWAIT}, {0, 1, SEM_UNDO}};
int rc;

if ((sem_key = ftok(excl_path, excl_ID)) == (key_t)-1) {
return 1;

}

if ((sem_ID = semget(sem_key, 1, IPC_CREAT | sem_perms)) == -1) {
return 1;

}

do {
rc = semop(sem_ID, sem_ops, 2);

} while ((rc == -1) && (errno == EINTR));

if (rc == -1) {
return 1;

}

sem_PID_lock = getpid();
(void) atexit(release_excl);
return 0;

}

Figure 142. Using a Semaphore to Enforce Daemon Exclusivity

Once the key of the semaphore is obtained by ftok, the key is passed to semget
to access the semaphore represented by that key. If the semaphore already
exists on the system, semget will access the semaphore without changing its
value. The semaphore will be created and initialized if it does not already exist
in the system, because the IPC_CREAT flag is specified on the call to semget. The
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semget routine initializes a newly created semaphore to 0. There is no way to
initialize a System V semaphore to 1 in an atomic fashion. This is inconvenient,
because the semaphore should be created in the unlocked state, and the
traditional value for an unlocked semaphore is 1. To avoid a race condition that
would exist if the semaphore′s value is set to 1 by a call to semctl after semget
creates it, the daemon support code uses the convention that a value of 0 means
the semaphore is not locked, and a value of 1 means the semaphore is locked.
Adopting this non-traditional convention with System V semaphores to avoid a
race condition is suggested in UNIX Network Programming, W. Richard Stevens,
1990, Prentice Hall, Englewood Cliffs.

Once the semaphore is accessed, the semop routine is used to attempt to lock
the semaphore. This is done with the operations defined in the sem_ops array.
The first operation will test to see if the semaphore′s value is 0. If the value is
not 0, the semop routine will return an error; if the IPC_NOWAIT flag had not been
specified with the semaphore operation, the process would have blocked. If the
semaphore ′s value is 0, semop does not return; it performs the next operation in
the sem_ops array. This operation changes the value of the semaphore to 1,
locking the semaphore. Once the semaphore is locked, semop returns with a
return code of 0. Notice that the SEM_UNDO flag is specified in the second
semaphore operation. This is very important. If the process terminates without
having explicitly unlocked the semaphore, it will automatically be unlocked. The
SEM_UNDO flag causes the system to undo the action performed by the semaphore
operation if it has not been undone by the time the process terminates. This
allows another process to run the daemon program after the first process
terminates unexpectedly.

If the semop routine returns an error, the semaphore could not be locked,
meaning the exclusivity requirements of the daemon program could not be met
by the process; the get_excl routine returns an error, and ultimately, the dae_init
routine returns an error. When dae_init returns an error, the process should
exit. If the semop routine does not return an error, the process has locked the
semaphore, and it may proceed to run the daemon program. In this case,
get_excl registers the release_excl routine as an exit handler by calling atexit.
If the process terminates by calling exit, the release_excl routine will be called.
The release_excl routine will remove the semaphore from the system, which also
automatically unlocks it. If the process terminates without having called exit,
the lock on the semaphore is released because SEM_UNDO was specified when the
semaphore was locked, but the semaphore is not removed from the system. The
release_excl routine is not absolutely necessary, but it is a good practice to
clean up System V IPC objects whenever possible.

Note that the get_excl routine records the process ID (PID) of the process that
obtained a lock on the semaphore, and that the release_excl routine only
removes the semaphore if the process which locked the semaphore is executing
release_excl. This is a necessary precaution. Suppose the process which called
get_excl created a child process. If the child process does not execute another
program, but exits while running the program that was inherited from its parent
process, the child process will call release_excl. If care was not taken in
release_excl, the child process could remove the semaphore that its parent
locked. Note that a child process inherits its exit handlers from its parent.

Figure 143 on page 238 shows the code for a program named semtest1 that will
be used to illustrate the effectiveness of the get_excl and release_excl routines.
The semtest1 program is not a daemon, just a little test program. The program
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calls get_excl with the path name of the file holding the program executable, and
an ID that is obtained from a program argument. If the program argument is not
provided, the ID defaults to 1. Notice that the program is designed to run until it
receives the SIGTERM signal. When it receives the SIGTERM signal, the program
will return from the main routine. When a program returns from the main routine,
exit is automatically called. That is significant to this program, since get_excl
installs release_excl as an exit handler. Figure 144 on page 239 shows the
results of running the semtest1 program.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

volatile sig_atomic_t stop_requested = 0;

void catch_term(int signo)
{

stop_requested = 1;
return;

}

int main(int argc, char **argv)
{

struct sigaction sa;
char excl_ID = 1;

if (argc > 1) {
excl_ID = atoi(argv[1]);

}

sa.sa_handler = catch_term;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;

(void) sigaction(SIGTERM, &sa, NULL);

if (get_excl(″ /u/agar/sem/semtest1″ ,  excl_ID) != 0) {
fprintf(stderr, ″%d: Violates exclusivity requirements.\n″ ,

getpid());
return 1;

}

while (stop_requested == 0) {
(void) sigsuspend(0);

}

return 0;
}

Figure 143. Source for the semtest1 Program
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$ ipcs -s
IPC status from /dev/mem as of Fri May 19 19:40:48 1995
T ID KEY MODE OWNER GROUP
Semaphores:
s 4096 0x4d06004f --ra-ra---- root system
s 1 0x620588b8 --ra-r--r-- root system
s 2 0x03141592 --ra-ra---- root system
s 3 0x0105884d --ra------- root system

$ ./semtest1 &
[1] 6320

$ ps -el | grep semtest1
200001 A 200 6320 8520 0 64 24 92a9 56 pts/1 0:00 semtest1

$ ipcs -s
IPC status from /dev/mem as of Fri May 19 19:41:07 1995
T ID KEY MODE OWNER GROUP
Semaphores:
s 4096 0x4d06004f --ra-ra---- root system
s 1 0x620588b8 --ra-r--r-- root system
s 2 0x03141592 --ra-ra---- root system
s 3 0x0105884d --ra------- root system
s 4100 0x01080269 --ra-ra-r-- agar staff

$ ./semtest1 &
[2] 8120
$ 8120: Violates exclusivity requirements.

[2] + Done(1) ./semtest1 &

$ ps -el | grep semtest1
200001 A 200 6320 8520 0 64 24 92a9 56 pts/1 0:00 semtest1

$ ipcs -s
IPC status from /dev/mem as of Fri May 19 19:41:56 1995
T ID KEY MODE OWNER GROUP
Semaphores:
s 4096 0x4d06004f --ra-ra---- root system
s 1 0x620588b8 --ra-r--r-- root system
s 2 0x03141592 --ra-ra---- root system
s 3 0x0105884d --ra------- root system
s 4100 0x01080269 --ra-ra-r-- agar staff

Figure 144 (Part 1 of 4). Examples of Running the semtest1 Program
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$ ./semtest1 2 &
[2] 8128

$ ps -el | grep semtest1
200001 A 200 6320 8520 0 64 24 92a9 56 pts/1 0:00 semtest1
200001 A 200 8128 8520 0 64 24 e30e 60 pts/1 0:00 semtest1

$ ipcs -s
IPC status from /dev/mem as of Fri May 19 19:42:25 1995
T ID KEY MODE OWNER GROUP
Semaphores:
s 4096 0x4d06004f --ra-ra---- root system
s 1 0x620588b8 --ra-r--r-- root system
s 2 0x03141592 --ra-ra---- root system
s 3 0x0105884d --ra------- root system
s 4100 0x01080269 --ra-ra-r-- agar staff
s 5 0x02080269 --ra-ra-r-- agar staff

$ ./semtest1 1 &
[3] 10952
$ 10952: Violates exclusivity requirements.

[3] + Done(1) ./semtest1 1 &

$ ./semtest1 2 &
[3] 10954
$ 10954: Violates exclusivity requirements.

[3] + Done(1) ./semtest1 2 &

$ ps -el | grep semtest1
200001 A 200 6320 8520 0 64 24 92a9 56 pts/1 0:00 semtest1
200001 A 200 8128 8520 0 64 24 e30e 60 pts/1 0:00 semtest1

$ ipcs -s
IPC status from /dev/mem as of Fri May 19 19:43:20 1995
T ID KEY MODE OWNER GROUP
Semaphores:
s 4096 0x4d06004f --ra-ra---- root system
s 1 0x620588b8 --ra-r--r-- root system
s 2 0x03141592 --ra-ra---- root system
s 3 0x0105884d --ra------- root system
s 4100 0x01080269 --ra-ra-r-- agar staff
s 5 0x02080269 --ra-ra-r-- agar staff

Figure 144 (Part 2 of 4). Examples of Running the semtest1 Program
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$ kill -TERM 6320

$ ps -el | grep semtest1
200001 A 200 8128 8520 0 64 24 e30e 60 pts/1 0:00 semtest1

[1] - Done ./semtest1 &

$ ipcs -s
IPC status from /dev/mem as of Fri May 19 19:43:47 1995
T ID KEY MODE OWNER GROUP
Semaphores:
s 4096 0x4d06004f --ra-ra---- root system
s 1 0x620588b8 --ra-r--r-- root system
s 2 0x03141592 --ra-ra---- root system
s 3 0x0105884d --ra------- root system
s 5 0x02080269 --ra-ra-r-- agar staff

$ ./semtest1 1 &
[1] 6360

$ ps -el | grep semtest1
200001 A 200 6360 8520 0 64 24 102b0 60 pts/1 0:00 semtest1
200001 A 200 8128 8520 0 64 24 e30e 60 pts/1 0:00 semtest1

$ ipcs -s
IPC status from /dev/mem as of Fri May 19 19:44:21 1995
T ID KEY MODE OWNER GROUP
Semaphores:
s 4096 0x4d06004f --ra-ra---- root system
s 1 0x620588b8 --ra-r--r-- root system
s 2 0x03141592 --ra-ra---- root system
s 3 0x0105884d --ra------- root system
s 8196 0x01080269 --ra-ra-r-- agar staff
s 5 0x02080269 --ra-ra-r-- agar staff

Figure 144 (Part 3 of 4). Examples of Running the semtest1 Program
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$ kill -KILL 8128

$ ps -el | grep semtest1
200001 A 200 6360 8520 0 64 24 102b0 60 pts/1 0:00 semtest1

[2] - Killed ./semtest1 2 &

$ ipcs -s
IPC status from /dev/mem as of Fri May 19 19:45:07 1995
T ID KEY MODE OWNER GROUP
Semaphores:
s 4096 0x4d06004f --ra-ra---- root system
s 1 0x620588b8 --ra-r--r-- root system
s 2 0x03141592 --ra-ra---- root system
s 3 0x0105884d --ra------- root system
s 8196 0x01080269 --ra-ra-r-- agar staff
s 5 0x02080269 --ra-ra-r-- agar staff

$ ./semtest1 2 &
[2] 8166

$ ps -el | grep semtest1
200001 A 200 6360 8520 0 64 24 102b0 60 pts/1 0:00 semtest1
200001 A 200 8166 8520 0 64 24 f30f 60 pts/1 0:00 semtest1

$ ipcs -s
IPC status from /dev/mem as of Fri May 19 19:45:29 1995
T ID KEY MODE OWNER GROUP
Semaphores:
s 4096 0x4d06004f --ra-ra---- root system
s 1 0x620588b8 --ra-r--r-- root system
s 2 0x03141592 --ra-ra---- root system
s 3 0x0105884d --ra------- root system
s 8196 0x01080269 --ra-ra-r-- agar staff
s 5 0x02080269 --ra-ra-r-- agar staff

$ ./semtest1 2 &
[3] 10990
$ 10990: Violates exclusivity requirements.

[3] + Done(1) ./semtest1 2 &

Figure 144 (Part 4 of 4). Examples of Running the semtest1 Program

Figure 144, part �1� shows that only one instance of semtest1 can be run at one
time with the same excl_ID value. First, the ipcs command is used to display the
semaphores that are currently defined on the system. Then, semtest1 is started
and placed in the background. No arguments are given to semtest1, so the
default excl_ID value is passed to the get_excl routine. A ps command shows
that the semtest1 program is in fact running. The ipcs command is run again,
showing the semaphore that was created by the call to get_excl in semtest1.
Notice that the semaphore′s key is 0x01080269. This key was generated by the
call to ftok in get_excl. The value of the key was generated from the values
passed to ftok, /u/agar/sem/semtest1 and 1. The semaphore ′s identifier is 4100.
This identifier is a handle generated by the system for the semaphore. Its value
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is of little importance. Next, an attempt is made to run another instance of
semtest1 with the default value for excl_ID. This attempt fails, because the
get_excl routine in the second process running semtest1 cannot lock the
semaphore. A ps command confirms that the original process running semtest1
continues to be the only process running semtest1. The ipcs command confirms
that the semaphore created by the first process running semtest1 continues to
exist on the system.

Figure 144, part �2� shows that another instance of semtest1 can be running on
the system if it uses an excl_ID value not currently used by any other process
running semtest1 on the system. A process is started, specifying 2 as the value
for excl_ID. A ps command shows that two processes are now running semtest1.
An ipcs command shows that another semaphore has been created on the
system. The key for this semaphore is slightly different than the key for the
previously created semaphore. The different values used for excl_ID account for
the difference. Attempts to start more processes running semtest1 with excl_ID
values of 1 or 2 fail due to the inability to obtain the semaphore locks.

Figure 144, part �3� shows what happens when a process running semtest1 is
terminated with the SIGTERM signal. The ipcs command indicates that the
semaphore that had been locked by the terminated process is no longer defined
in the system. This happened because the semtest1 process called exit to
terminate. This caused the release_excl exit handler to execute. The
release_excl routine called semctl to remove the semaphore from the system.
Since the process running semtest1, which had specified a value of 1 for excl_ID,
was terminated, it is now possible to run another process running semtest1 with
the value of 1 for excl_ID. The second ipcs command run in part �3� shows that
a semaphore with key 0x01080269 has been recreated. The recreated semaphore
has a different semaphore identifier than it had before, which is proper.

Figure 144, part �4� shows what happens when a process running semtest1 is
terminated in such a way that the process does not execute the exit routine. In
this example, the SIGKILL signal is used to terminate the process. The ipcs
command indicates that the semaphore that had been locked by the terminated
process is still defined in the system. Even though the semaphore is still
defined, it should not be locked. Since the process running semtest1, which had
specified a value of 2 for excl_ID, was terminated, it should now be possible to
run another process running semtest1 with the value of 2 for excl_ID. The
example shows that it is. The second ipcs command run in part �4� shows that
an additional semaphore was not created, as expected.

There is a limitation to using the ftok routine to generate semaphore keys. The
key generated by ftok for a specific file name and identifier may change if the
file referred to by the file name is removed and recreated. This is illustrated in
Figure 145 on page 244. Once the semtest1 program is removed and recreated,
another semtest1 process can be run with an excl_ID value of 1. So, if a daemon
is using a semaphore to enforce its exclusivity requirements, it is recommended
that processes running the daemon program should be stopped before a new
version of the program is installed.
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$ ps -el | grep semtest1
200001 A 200 6360 8520 0 64 24 102b0 60 pts/1 0:00 semtest1
200001 A 200 8166 8520 0 64 24 f30f 60 pts/1 0:00 semtest1

$ ipcs -s
IPC status from /dev/mem as of Fri May 19 19:45:29 1995
T ID KEY MODE OWNER GROUP
Semaphores:
s 4096 0x4d06004f --ra-ra---- root system
s 1 0x620588b8 --ra-r--r-- root system
s 2 0x03141592 --ra-ra---- root system
s 3 0x0105884d --ra------- root system
s 8196 0x01080269 --ra-ra-r-- agar staff
s 5 0x02080269 --ra-ra-r-- agar staff

$ ./semtest1 1 &
[3] 9866
$ 9866: Violates exclusivity requirements.

$ cp semtest1 semtest1.tmp; rm -f semtest1; mv semtest1.tmp semtest1

$ ./semtest1 1 &
[3] 9028

$ ps -el | grep semtest1
200001 A 200 6360 8520 0 64 24 102b0 60 pts/1 0:00 semtest1
200001 A 200 8166 8520 0 64 24 f30f 60 pts/1 0:00 semtest1
200001 A 200 9028 8520 0 64 24 e30e 56 pts/1 0:00 semtest1

$ ipcs -s
IPC status from /dev/mem as of Fri May 19 19:47:38 1995
T ID KEY MODE OWNER GROUP
Semaphores:
s 4096 0x4d06004f --ra-ra---- root system
s 1 0x620588b8 --ra-r--r-- root system
s 2 0x03141592 --ra-ra---- root system
s 3 0x0105884d --ra------- root system
s 8196 0x01080269 --ra-ra-r-- agar staff
s 5 0x02080269 --ra-ra-r-- agar staff
s 6 0x0108026a --ra-ra-r-- agar staff

Figure 145. Failure of Semaphore When File Is Recreated
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Chapter 10. Daemon Support Routines

The daemon support routines are a collection of routines that take care of many
of the issues discussed in this document. It is hoped that a daemon writer will
find that these routines make the job of initializing a daemon, and allowing it to
run under the control of init, inetd, or the SRC, easier.

10.1 Introduction to the Daemon Support Routines
Several of the daemon support routines deal with initializing a daemon. The
dae_init routine actually initializes the daemon. Other routines, those with the
dae_init_ prefix, are designed to be called before dae_init; calling these routines
before dae_init will influence how dae_init initializes the daemon. The daemon
support routines dealing with daemon initialization are:

• dae_init - This routine implements daemon initialization. It deals with the
issues discussed in Chapter 3, “Daemon Initialization” on page 19. It may
also deal with the issues of paging space allocation policies, SRC unique
initialization, and daemon exclusivity. A parameter to dae_init can limit how
the daemon may be started. See A.1, “dae_init(3)” on page 316, the
dae_init man page, for details.

• dae_init_SRC_sig - When called before dae_init from a daemon expecting
signal communication from the SRC, this routine can affect how the daemon
will handle requests from the SRC. This routine also affects how the daemon
will handle the SIGTERM signal, whether it is under SRC control or not. See
A.2, “dae_init_SRC_sig(3)” on page 321, the dae_init_SRC_sig man page, for
details.

• dae_init_SRC_msq - When called before dae_init from a daemon expecting
message queue communication from the SRC, this routine can affect how the
daemon will handle requests from the SRC. This routine also affects how the
daemon will handle the SIGTERM signal, whether the daemon is under SRC
control or not. See A.3, “dae_init_SRC_msq(3)” on page 325, the
dae_init_SRC_msq man page, for details.

• dae_init_SRC_sock - When called before dae_init from a daemon expecting
socket communication from the SRC, this routine can affect how the daemon
will handle requests from the SRC. This routine also affects how the daemon
will handle the SIGTERM signal, whether the daemon is under SRC control or
not. See A.4, “dae_init_SRC_sock(3)” on page 328, the dae_init_SRC_sock
man page, for details.

• dae_init_term_sig - When called before dae_init from a daemon never
expecting to be controlled by the SRC, this routine can affect how the
daemon will handle the SIGTERM signal. See A.5, “dae_init_term_sig(3)” on
page 336, the dae_init_term_sig man page, for details.

• dae_init_prevent_zombies - When called before dae_init, this routine will
prevent the daemon process from creating long lasting zombie processes.
See A.6, “dae_init_prevent_zombies(3)” on page 338, the
dae_init_prevent_zombies man page, for details.

• dae_init_lowps - When called before dae_init, this routine will cause the
daemon process to be protected from termination when the system is low on
paging space. See A.7, “dae_init_lowps(3)” on page 340, the dae_init_lowps
man page, for details.
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• dae_init_psalloc - When called before dae_init, this routine will cause the
daemon process to run with the specified paging space allocation policy.
See A.8, “dae_init_psalloc(3)” on page 342, the dae_init_psalloc man page,
for details.

• dae_init_exclusive - When called before dae_init, this routine will ensure the
daemon is running in accordance with the exclusivity requirements of the
daemon. See A.9, “dae_init_exclusive(3)” on page 346, the
dae_init_exclusive man page, for details.

When a daemon is running under the control of the SRC, and it expects requests
from the SRC to come through a message queue or a socket, the daemon must
monitor the message queue or socket. When the message queue or socket can
be read, the daemon must read the SRC request, decode the request, perform
appropriate actions to satisfy the request, and send results to the location
indicated in the request. The daemon support routines provide several routines
to handle much of the work associated with SRC requests. These routines are:

• The dae_SRC_req routine reads the next SRC request from a message queue
or socket, decodes the request, calls a daemon-specific routine to perform
the appropriate actions to satisfy the request, and sends the results to the
location indicated in the request. See A.10, “dae_SRC_req(3)” on page 349,
the dae_SRC_req man page, for details. The daemon must still monitor the
message queue or socket to determine when dae_SRC_req should be called.

• The dae_status_short routine allows a daemon to incorporate the SRC
subsystem short status output in its subsystem long status output. See A.11,
“dae_status_short(3)” on page 351, the dae_status_short man page, for
details.

• The dae_status_puts and dae_margin_puts routines provide interfaces similar
to puts for specifying the contents of the daemon′s subsystem long status
output. See A.12, “dae_status_puts(3)” on page 354, the dae_status_puts
man page, and A.14, “dae_margin_puts(3)” on page 360, the dae_margin_puts
man page, for details.

• The dae_status_printf and dae_margin_printf routines provide interfaces
similar to printf for specifying the contents of the daemon′s subsystem long
status output. See A.13, “dae_status_printf(3)” on page 357, the
dae_status_printf man page, and A.15, “dae_margin_printf(3)” on page 364,
the dae_margin_printf man page, for details.

• The dae_inform_puts and dae_inform_printf routines provide interfaces
similar to puts and printf for specifying informational messages to be
displayed on the standard output of a process making a subsystem trace on,
trace off, refresh, or long status request. These routines can also be used to
display informational messages on the standard output of a process making
a subsystem-defined request. See A.16, “dae_inform_puts(3)” on page 368,
the dae_inform_puts man page, and A.17, “dae_inform_printf(3)” on page 371,
the dae_inform_printf man page, for details.

• The dae_error_puts and dae_error_printf routines provide interfaces similar
to puts and printf for specifying error messages to be sent to a process
making a subsystem trace on, trace off, refresh, or long status request.
These routines can also be used to specify error messages to be sent to a
process making a subsystem-defined request. See A.18, “dae_error_puts(3)”
on page 374, the dae_error_puts man page, and A.19, “dae_error_printf(3)”
on page 377, the dae_error_printf man page, for details.
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The daemon support routines include a routine that indicates if the calling
process has initialized itself as a daemon with the dae_init routine. See A.20,
“dae_process_is_the_daemon(3)” on page 380, the dae_process_is_the_daemon
man page, for details.

The daemon support routines include a routine that provides the same interface
and function as fopen, but protects the process from obtaining a controlling
terminal. See A.21, “dae_fopen(3)” on page 381, the dae_fopen man page, for
details.

The header file associated with the daemon support routines, dae.h, defines a
macro that will conditionally stop a process until a debugger is attached to the
process. The process will be stopped only if the environment includes a specific
value for a specific variable. Invoking this macro at the very beginning of the
main routine in a daemon can help in debugging daemon initialization. See A.22,
“DAE_M_STOP(3)” on page 382, the DAE_M_STOP man page, for details.

10.2 Examples of Using the Daemon Support Routines
This section includes examples illustrating how a daemon may use the daemon
support routines.

10.2.1 Running under the inetd Process
Figure 146 on page 248 shows an example of how a daemon designed to run
under the control of inetd might use dae_init to initialize itself. The constant
DAE_P_INETD is passed indirectly through the first parameter. This will cause
dae_init to verify that the daemon has been started by inetd. If the daemon has
not been started by inetd, dae_init will return with an error value. The second
parameter is specified as the address of an area into which detailed error data
may be placed. When dae_init returns, the program compares the return value
from dae_init with DAE_E_OK, the return value from the daemon support routines
that indicates success. If the return value from dae_init is DAE_E_OK, the program
can continue to run as a daemon. If the return value from dae_init is not
DAE_E_OK, dae_init could not initialize the daemon properly. In this case, the
daemon might want to put a message in the error log which includes information
from err_detail; an example is shown in 10.2.10, “Logging Detail Data” on
page 285. Since the daemon could not be initialized as a daemon, the program
should exit. In this example, the exit value is based on the return value from
dae_init.
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#include <dae.h>

#define SUBSYS_DAE_OFFSET 200

int main(int argc, char **argv)
{

dae_parent_t parent;
dae_error_detail_t err_detail;
int rc;

parent = DAE_P_INETD;

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
/* Log an error message using the information in err_detail. */
return SUBSYS_DAE_OFFSET + rc;

}

/* Continue, as the daemon ... */

return 0;
}

Figure 146. Initializing an inetd Daemon with the dae_init Routine

Here is a summary of the state of the daemon when dae_init returns DAE_E_OK in
Figure 146:

• The daemon was started by inetd.

• The daemon is ignoring the SIGHUP, SIGINT, SIGQUIT, SIGTSTP, SIGTTIN, and
SIGTTOU signals.

• The daemon is running in the process that was started by inetd.

• If the daemon is running on an AIX system, it is running with the paging
space allocation policy that it inherited from inetd.

• The daemon process is a session leader without a controlling terminal.

• The daemon process is ignoring the SIGPIPE signal.

• No action has been taken to prevent the daemon from producing zombie
processes.

• The disposition for the SIGTERM signal is the default. That is, when the
SIGTERM signal is delivered to the process, the process will terminate
immediately.

• No signal handler is installed for the SIGDANGER signal. If the daemon is
running on an AIX system, and the number of free paging-space blocks on
the system falls below the paging-space kill threshold, the daemon process
may be terminated by the kernel.

• All file descriptors, except for file descriptors 0, 1, and 2, are closed.

• File descriptors 0, 1, and 2 are associated with the socket through which the
daemon is to communicate with its client.

• The current working directory of the daemon process is root, /.
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• The file mode creation mask of the daemon process is 0.

• Other processes on the system may or may not be running the daemon
program.

Figure 147 shows a modified version of the code in Figure 146 on page 248.
The modified code adds a routine, term_daemon, that is meant to clean up the
daemon when the daemon is requested to terminate through the SIGTERM signal.
A call to dae_init_term_sig was added; as a result, dae_init will install
term_daemon as the signal handler for the SIGTERM signal.

#include <dae.h>

#define SUBSYS_DAE_OFFSET 200

void term_daemon(int signo)
{

/* clean up the daemon */

_exit(0);
}

int main(int argc, char **argv)
{

dae_parent_t parent;
dae_error_detail_t err_detail;
int rc;

parent = DAE_P_INETD;

dae_init_term_sig(term_daemon, 1);

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
/* Log an error message using the information in err_detail. */
return SUBSYS_DAE_OFFSET + rc;

}

/* Continue, as the daemon ... */

return 0;
}

Figure 147. Initializing an inetd Daemon with the dae_init Routine

The state of the daemon initialized in Figure 147 is the same as the state of the
daemon initialized in Figure 146 on page 248, with the following exception:

• The term_daemon routine has been installed as the signal handler for the
SIGTERM signal. Therefore, when the SIGTERM signal is delivered to the
process, the term_daemon routine will run, and will clean up and terminate the
process.
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10.2.2 Running under the SRC: Signal Communication
This section presents some examples of how a daemon to be controlled by SRC
through signal communication might use dae_init to initialize itself.

Figure 148 shows the first example. The value used for the first parameter of
dae_init is DAE_P_SRC. This will cause dae_init to ensure that the daemon is
running under the control of the SRC. If the daemon is not running under the
control of the SRC, dae_init will return an error indication. Since the daemon is
allowed to run only under SRC control, this daemon assumes it will only be
compiled and run on an AIX system.

#include <dae.h>

#define SUBSYS_DAE_OFFSET 200

int main(int argc, char **argv)
{

dae_parent_t parent;
dae_error_detail_t err_detail;
int rc;

parent = DAE_P_SRC;

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
/* Log an error message using the information in err_detail. */
return SUBSYS_DAE_OFFSET + rc;

}

/* Continue, as the daemon ... */

return 0;
}

Figure 148. Initializing an SRC Daemon

Here is a summary of the state of the daemon when dae_init returns DAE_E_OK in
Figure 148:

• The daemon was started by the SRC.

• The daemon is ignoring the SIGHUP, SIGINT, SIGQUIT, SIGTSTP, SIGTTIN, and
SIGTTOU signals.

• The daemon is running in the process that was started by the SRC.

• The daemon is running with a paging space allocation policy that was
determined by the environment set up for the process by the SRC. This
environment is essentially the environment defined in /etc/environment.

• The daemon process is a session leader without a controlling terminal.

• The daemon process is ignoring the SIGPIPE signal.

• No action has been taken to prevent the daemon from producing zombie
processes.

250 Writing Reliable AIX Daemons 



• The disposition for the SIGTERM signal is the default. That is, when the
SIGTERM signal is delivered to the process, the process will terminate
immediately. Because dae_init_SRC_sig was not called, the daemon support
routines assume that the subsystem stop normal and subsystem stop forced
signals defined for the daemon are SIGTERM.

• No signal handler is installed for the SIGDANGER signal. If the number of free
paging-space blocks on the system falls below the paging-space kill
threshold, the daemon process may be terminated by the kernel.

• All file descriptors, except for file descriptors 0, 1, and 2, are closed.

• File descriptors 0, 1, and 2 are open and associated with the files specified in
the SRC definition of the subsystem.

• The current working directory of the daemon process is root, /.

• The file mode creation mask of the daemon process is 0.

• Other processes on the system may or may not be running the daemon
program.

Figure 149 on page 252 shows an example of how a daemon designed to run
under the control of the SRC might use dae_init to initialize itself if it can be
compiled and run on non-AIX systems, and it can be compiled in a debugging
mode. The value used for the first parameter of dae_init depends on how the
program is compiled. If the program is compiled on an AIX system (_AIX is
defined) without debugging code (_DEBUG is not defined), DAE_P_SRC is used. This
will cause dae_init to ensure that the daemon is running under the control of the
SRC. If the program is compiled on an AIX system with debugging code (_DEBUG
is defined), the values DAE_P_SRC and DAE_P_OTHER are used. This will allow the
daemon to be started from the SRC, a shell, or init. Running the daemon from
the command line may be helpful while debugging. If the program is compiled
on a system other than AIX, the SRC is not available. Therefore, DAE_P_OTHER is
used to allow the daemon to be started from init or a shell.
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#include <dae.h>

#if defined(_AIX) && !defined(_DEBUG)
#define ALLOWED_PARENT DAE_P_SRC

#elif defined(_AIX) && defined(_DEBUG)
#define ALLOWED_PARENT (DAE_P_SRC | DAE_P_OTHER)

#else
#define ALLOWED_PARENT DAE_P_OTHER

#endif

#define SUBSYS_DAE_OFFSET 200

int main(int argc, char **argv)
{

dae_parent_t parent;
dae_error_detail_t err_detail;
int rc;

parent = ALLOWED_PARENT;

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
/* Log an error message using the information in err_detail. */
return SUBSYS_DAE_OFFSET + rc;

}

/* Continue, as the daemon ... */

return 0;
}

Figure 149. Initializing an SRC Daemon

When the daemon in Figure 149 is started by the SRC, its state once dae_init
returns successfully is identical to the state described for the daemon in
Figure 148 on page 250. When the daemon in Figure 149 is started by init or a
shell, its state differs from the state described for the daemon in Figure 148 on
page 250 in the following ways:

• If the parent process of the process that called dae_init was not init, the
daemon was migrated to another process. In this case, the process that
returned from dae_init was created by the process that called dae_init, and
the process that called dae_init no longer exists.

• If the daemon was started by init, and the daemon is running on an AIX
system, the daemon is running with a paging space allocation policy that
was determined by the environment set up for the process by init. This
environment is essentially the environment defined in /etc/environment.
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• If the daemon was started by a shell, and the daemon is running on an AIX
system, the daemon is running with the paging space allocation policy
determined by the environment inherited from the shell49.

• File descriptors 0, 1, and 2 are open and associated with /dev/null.

The example in Figure 150 on page 254 assumes that the daemon definition
specifies the SIGUSR1 signal for the subsystem stop normal request and the
SIGUSR2 signal for the subsystem stop forced request. The example also supplies
signal handlers for all three types of subsystem stop requests. The example
calls dae_init_SRC_sig to arrange for these signal handlers to be installed. The
signal handler installed to support the subsystem stop normal request,
normal_stop, just sets a flag indicating that a stop request has been made. This
flag should be checked periodically elsewhere in the program. The signal
handler installed to support the subsystem stop forced and subsystem stop
cancel requests, quick_stop, cleans up and terminates within the signal handler.
The approach used for stop signal handlers is up to the daemon.

49 When the daemon is started from a shell, the process flags may not correctly indicate the paging space allocation policy under
which the daemon is running. See 8.5.1, “Determining the Paging Space Allocation Policy of a Process” on page 216 for an
explanation. The problem can be avoided by specifying a specific paging space allocation policy in a call to the routine
dae_init_psalloc. Information about the dae_init_psalloc routine can be found in 10.2.7, “Setting the Paging Space Allocation
Policy” on page 279.
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#include <signal.h>
#include <dae.h>

#define SUBSYS_DAE_OFFSET 200

volatile sig_atomic_t stop_requested = 0;

void normal_stop(int signo)
{

stop_requested = 1;
return;

}

void quick_stop(int signo)
{

/* Cleanup the daemon quickly ... */

_exit(0);
}

int main(int argc, char **argv)
{

dae_parent_t parent = DAE_P_SRC;
dae_req_sig_t SRC_rtns;
dae_error_detail_t err_detail;
int rc;

SRC_rtns.dae_stop_normal = normal_stop;
SRC_rtns.dae_stop_forced = quick_stop;
SRC_rtns.dae_stop_cancel = quick_stop;

dae_init_SRC_sig(SIGUSR1, SIGUSR2, &SRC_rtns, 1);

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
/* Log an error message using the information in err_detail. */
return SUBSYS_DAE_OFFSET + rc;

}

/* Continue, as the daemon ... Look at stop_requested periodically */

return 0;
}

Figure 150. Using dae_init_SRC_sig to Specify Stop Request Signal Handlers

10.2.3 Running under the SRC: Message Queue Communication
Figure 151 on page 256 presents an example of a daemon designed to run
under SRC control with message queue communication. In the main routine,
dae_init_SRC_msq is called to provide the daemon support routines with
information about the message queue through which SRC requests are expected
and the addresses of routines that will handle SRC requests. The first
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parameter to dae_init_SRC_msq points to an integer that will be set to the
identifier of the message queue through which SRC requests will be received.
The second parameter provides the key of that message queue. The third
parameter indicates the type of the SRC request messages expected on the
queue. Through the fourth parameter, the daemon provides the addresses of
routines that will handle SRC requests. The subsystem stop normal and
subsystem stop forced requests will be handled by msq_stop. The subsystem
stop cancel request will be handled by signal_stop. The subsystem long status
request will be handled by report_status. The daemon indicates that it does not
support the subsystem trace requests or the subsystem refresh request, by
specifying NULL pointer values for the dae_trace_begin, dae_trace_end, and
dae_refresh members of the structure whose address is provided in the fourth
parameter. The daemon also indicates that it does not support other
subsystem-defined requests, by specifying the NULL pointer value for the
dae_other_req member of the structure whose address is provided in the fourth
parameter. The fifth parameter is set to 1; this will cause the signal_stop routine
to be installed as a signal handler such that if it interrupts a restartable system
call, the system call will be restarted automatically.
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#include <signal.h>
#include <dae.h>

#define SUBSYS_DAE_OFFSET 200
#define MSQ_KEY 0xBADF00D
#define MSQ_TYPE 0xBEEF

volatile sig_atomic_t stop_requested = 0;
int msqid;

static void msq_stop(void);
static void signal_stop(int signo);
static void report_status(void);
static void do_daemon_work(void);

int main(int argc, char **argv)
{

dae_parent_t parent;
dae_req_msq_t SRC_rtns;
dae_error_detail_t err_detail;
int rc;

SRC_rtns.dae_stop_normal = msq_stop;
SRC_rtns.dae_stop_forced = msq_stop;
SRC_rtns.dae_stop_cancel = signal_stop;
SRC_rtns.dae_trace_begin = NULL;

 SRC_rtns.dae_trace_end = NULL;
 SRC_rtns.dae_refresh = NULL;

SRC_rtns.dae_long_status = report_status;
 SRC_rtns.dae_other_req = NULL;

dae_init_SRC_msq(&msqid, MSQ_KEY, MSQ_TYPE, &SRC_rtns, 1);

parent = DAE_P_SRC;

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
/* Log an error message using the information in err_detail. */
return SUBSYS_DAE_OFFSET + rc;

}

do_daemon_work();

return 0;
}

Figure 151 (Part 1 of 3). An SRC Daemon Using Message Queue Communication
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#include <time.h>
#include <dae.h>

static void msq_stop(void)
{

stop_requested = 1;
return;

}

static void signal_stop(int signo)
{

stop_requested = 1;
return;

}

static void report_status(void)
{

time_t current_time;

dae_status_short();

dae_status_printf(″\nAll is well with process %d at ″ ,  getpid());

current_time = time(NULL);
dae_status_puts(ctime(&current_time));

return;
}

Figure 151 (Part 2 of 3). An SRC Daemon Using Message Queue Communication
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#include <unistd.h>
#include <sys/select.h>
#include <sys/types.h>
#include <time.h>
#include <dae.h>

static void do_daemon_work(void)
{

struct sellist {
int msqids[1];

};
struct sellist read_list;
struct timeval time_out;
time_t start_time, end_time, current_time;
const time_t sample_rate = 5 * 60; /* Sample every 5 minutes. */
const int nmsq = 1 << 16;
int rval;

while (!stop_requested) {

/* Do the actual work of the daemon here, perhaps. */

start_time = time(NULL);
end_time = start_time + sample_rate;

current_time = start_time;

while ((current_time < end_time) && (!stop_requested)) {

time_out.tv_sec = end_time - current_time;
time_out.tv_usec = 0;
read_list.msqids[0] = msqid;
rval = select(nmsq, &read_list, NULL, NULL, &time_out);

if ((rval == nmsq) && (read_list.msqids[0] == msqid)) {
dae_SRC_req();

}

current_time = time(NULL);
}

}

return;
}

Figure 151 (Part 3 of 3). An SRC Daemon Using Message Queue Communication

In Figure 151 on page 256, dae_init is called to actually initialize the daemon.
The value passed through the first parameter, DAE_P_SRC, causes dae_init to
succeed only if the daemon is running under SRC control. The dae_init routine
will access the message queue with the key provided as the second parameter
of dae_init_SRC_msq. The message queue is accessed with a call to msgget. The
message queue identifier returned by msgget is, in turn, returned to the caller of
dae_init through the pointer provided as the first parameter to dae_init_SRC_msq.
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Figure 151, part �2� shows the routines that will handle SRC requests. The
msq_stop and signal_stop routines will, when invoked, just set a global variable,
stop_requested, to indicate that a stop request has been made. The
do_daemon_work routine will periodically look at the setting of stop_requested to
determine if the daemon is to be stopped. The report_status routine provides
the output for a subsystem long status request by calling daemon support
routines that allow for specification of long status output. Calling the
dae_status_short routine causes the subsystem short status to be included in the
long status output. The report_status routine uses dae_status_printf to specify
output in a manner similar to printf, and dae_status_puts to specify output in a
manner similar to fputs.

Figure 151, part �3� shows the do_daemon_work routine, which will presumably do
the work the daemon is designed to do. This routine is structured for a daemon
that will sample some data at some regular interval, in this case every 5
minutes. The routine uses select with a time out value. The time out value
specified is the time remaining until the expiration of the sampling interval. The
select system call will return when the time out value has expired, the SRC
request message queue has a message that can be read, or when it is
interrupted by a signal handler returning. The do_daemon_work routine is coded
so the data sample is taken at the proper interval. This may involve several
calls to select per interval if select returns before the time out specified has
expired. If the select routine indicates data can be read from the message
queue, the dae_SRC_req routine is called. When dae_SRC_req returns, select is
called again if there is more time to wait before the expiration of the sampling
interval, and a stop request has not been received.

The dae_SRC_req routine will read a request from the message queue and
determine what type of request is being made. If a request-handling routine for
the request had been specified on the call to dae_init_SRC_msq, the
request-handling routine is called. For example, if the request is a subsystem
long status request, the report_status routine is called. Once the report_status
routine returns to dae_SRC_req, dae_SRC_req sends a response to the destination
specified in the request. If dae_SRC_req reads a request for which the daemon
has not provided a request-handling routine, dae_SRC_req sends an error
response to the destination specified in the request.

The do_daemon_work routine will return to its caller, main, when the stop_requested
variable has been set to a non-zero value. Then, main will terminate the
program. The program will be terminated shortly after receiving any of the SRC
stop requests. Consider a subsystem stop cancel request. Assume the
subsystem stop cancel request is made while the daemon is blocked in the
select call. The SIGTERM signal will be delivered to the daemon process. This
will cause the execution of the signal_stop signal handler. The signal_stop
routine sets stop_requested to 1, and returns. The select system call is not an
automatically restarted system call, so it returns with a value of -1 (errno is set
to EINTR). The do_daemon_work routine will see that stop_requested is not 0, and it
will return to its caller.

Now consider a subsystem stop normal request. Again, assume the stop normal
request is made while the daemon is blocked in the select call. A message will
be placed in the message queue. The select routine will return, indicating the
message queue can be read. The do_daemon_work routine will call dae_SRC_req.
The dae_SRC_req routine will read a message from the message queue. It will
interpret the request as a subsystem stop normal request. It will then call
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msq_stop. The msq_stop routine will set the stop_requested global variable to 1. It
will then return to dae_SRC_req, which will return to do_daemon_work. The
do_daemon_work routine will see that stop_requested is not 0, and it will return to
its caller. A similar sequence of events would have occurred had a subsystem
stop forced request been received.

Figure 152 shows how the daemon shown in Figure 151 on page 256 can be
controlled with SRC commands. First, the SRC definition of the subsystem is
done with mkssys. The example assumes the daemon program exists as
/usr/lpp/somelpp/bin/SRC.msq. The subsystem is defined with the name
des.ex.msq, in a group named des.ex. The -I and -m flags used with mkssys
indicate the SRC should make requests of the subsystem through a message
queue. The -I flag argument specifies a message queue key of 195948557, which
is the decimal equivalent of the 0xBADF00D constant used in the program. The -m
flag argument specifies a message type of 48879, which is the decimal
equivalent of the 0xBEEF constant used in the program. The subsystem can be
started and stopped, and it can provide long status. Requests to start tracing,
end tracing, and refresh the subsystem fail, since the daemon did not provide
routines to handle these requests.

# mkssys -s des.ex.msq -p /usr/lpp/somelpp/bin/SRC.msq -u 0 \
-i /dev/null -o /dev/null -e /dev/null -I 195948557 -m 48879 -G des.ex

0513-071 The des.ex.msq Subsystem has been added.

# startsrc -s des.ex.msq
0513-059 The des.ex.msq Subsystem has been started. Subsystem PID is 8522.

# lssrc -s des.ex.msq
Subsystem Group PID Status
 des.ex.msq des.ex 8522 active

# lssrc -ls des.ex.msq
Subsystem Group PID Status
 des.ex.msq des.ex 8522 active

 All is well with process 8522 at Mon Apr 24 16:11:58 1995

# refresh -s des.ex.msq
0513-129 The subsystem does not support the requested action.

# traceson -s des.ex.msq
0513-129 The subsystem does not support the requested action.

# tracesoff -s des.ex.msq
0513-129 The subsystem does not support the requested action.

# stopsrc -s des.ex.msq
0513-044 The stop of the des.ex.msq Subsystem was completed successfully.

# lssrc -s des.ex.msq
Subsystem Group PID Status
 des.ex.msq des.ex inoperative

Figure 152. Controlling the Message Queue Daemon with SRC
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10.2.4 Running under the SRC: Socket Communication
Figure 153 presents an example of a daemon designed to run under SRC control
with socket communication. The daemon will act as a concurrent server that
communicates with its clients through sockets.

�1�
#include <unistd.h>
#include <dae.h>

#define SUBSYS_DAE_OFFSET 200

int stop_requested = 0;
int client_count = 0;
int acpt_sockd, SRC_sockd = -1;

static void normal_stop(void);
static void forced_stop(void);
static void cancel_stop(int signo);
static void begin_trace(int longtrace);
static void end_trace(void);
static void refresh_config(void);
static void report_status(void);
static int prepare_socket(void);
static void do_daemon_loop(void);

int main(int argc, char **argv)
{

dae_parent_t parent = DAE_P_SRC;
dae_req_sock_t SRC_rtns;
dae_error_detail_t err_detail;
int rc;

SRC_rtns.dae_stop_normal = normal_stop;
SRC_rtns.dae_stop_forced = forced_stop;
SRC_rtns.dae_stop_cancel = cancel_stop;
SRC_rtns.dae_trace_begin = begin_trace;

 SRC_rtns.dae_trace_end = end_trace;
 SRC_rtns.dae_refresh = refresh_config;

SRC_rtns.dae_long_status = report_status;
 SRC_rtns.dae_other_req = NULL;

 dae_init_prevent_zombies(parent, 1);
dae_init_SRC_sock(&SRC_sockd, &SRC_rtns, 1);

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
/* Log an error message using the information in err_detail. */
return SUBSYS_DAE_OFFSET + rc;

}

if (prepare_socket() == 0)
do_daemon_loop();

return 0;
}

Figure 153 (Part 1 of 7). An SRC Daemon Using Socket Communication
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#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>

static int prepare_socket(void)
{

struct sockaddr_in saddr;
struct servent *servent;
int reuse_on = 1;

if ((acpt_sockd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
/* Log message; probably include the errno value. */
return 1;

}

if (setsockopt(acpt_sockd, SOL_SOCKET, SO_REUSEADDR,
(char *) &reuse_on, sizeof reuse_on) == -1) {

/* Log message; probably include the errno value. */
return 1;

}

if ((servent = getservbyname(″des.ex.sock″,  ″tcp″)) == NULL) {
/* Log message; probably include the errno value. */
return 1;

}

memset(&saddr, 0, sizeof saddr);
saddr.sin_family = AF_INET;
saddr.sin_addr.s_addr = INADDR_ANY;

 saddr.sin_port = servent->s_port;

if (bind(acpt_sockd, (struct sockaddr *) &saddr, sizeof saddr) == -1) {
/* Log message; probably include the errno value. */
return 1;

}

if (listen(acpt_sockd, SOMAXCONN) == -1) {
/* Log message; probably include the errno value. */
return 1;

}

return 0;
}

Figure 153 (Part 2 of 7). An SRC Daemon Using Socket Communication
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#include <unistd.h>
#include <errno.h>
#include <sys/select.h>
#include <sys/types.h>
#include <dae.h>

#define MAX(x, y) ( ((x) > (y)) ? (x) : (y) )

static void create_daemon_child(void);

static void do_daemon_loop(void)
{

int numfds;
fd_set read_fds;

(void) refresh_config();

numfds = MAX(acpt_sockd, SRC_sockd) + 1;

while (!stop_requested) {

FD_ZERO(&read_fds);
FD_SET(acpt_sockd, &read_fds);
FD_SET(SRC_sockd, &read_fds);

if (select(numfds, &read_fds, NULL, NULL, NULL) == -1) {
if (errno == EINTR) {

continue;
}
/* Log message */
break;

}

if (FD_ISSET(acpt_sockd, &read_fds)) {
create_daemon_child();
client_count++;

}

if (FD_ISSET(SRC_sockd, &read_fds)) {
dae_SRC_req();

}

}

return;
}

Figure 153 (Part 3 of 7). An SRC Daemon Using Socket Communication
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#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

void do_daemon_work(int serv_sockd);

static void create_daemon_child(void)
{

int serv_sockd;
struct sockaddr_in sock_addr;
int sock_addr_len;
pid_t childpid;

do {
sock_addr_len = sizeof sock_addr;
serv_sockd = accept(acpt_sockd,

(struct sockaddr *) &sock_addr, &sock_addr_len);

} while ((serv_sockd == -1) && (errno == EINTR));

if ((childpid = fork()) == -1) {
/* Log message; probably include the errno value. */
close(serv_sockd);
return;

}

if (childpid != 0) { /* This is the parent process. */
close(serv_sockd);
return;

}

/* This is the child process. */

close(acpt_sockd);

do_daemon_work(serv_sockd);

close(serv_sockd);
exit(0);

return; /* Should not reach. */
}

Figure 153 (Part 4 of 7). An SRC Daemon Using Socket Communication
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#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/socketvar.h>

static char config_path[MAXPATHLEN + 1] = ″ /etc/des.ex.sock.conf″ ;
static char config_buf[80];
static int config_cnt = 0;
static int tracing_on = 0;

static void normal_stop(void)
{

stop_requested = 1;
return;

}

static void forced_stop(void)
{

struct sigaction sa;

sa.sa_handler = SIG_IGN;
sigemptyset(&(sa.sa_mask));
sa.sa_flags = 0;

(void) sigaction(SIGTERM, &sa, NULL);
(void) kill(0, SIGTERM);

exit(0);
}

static void cancel_stop(int signo)
{

if (dae_process_is_the_daemon()) {
(void) kill(0, SIGTERM);

}

_exit(0);
}

Figure 153 (Part 5 of 7). An SRC Daemon Using Socket Communication
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static void begin_trace(int longtrace)
{

int debug_on = 1;
const char *error_msg =

″Subsystem des.ex.sock failed to put socket in debug mode.\n″ ;

if (setsockopt(acpt_sockd, SOL_SOCKET, SO_DEBUG,
(char *) &debug_on, sizeof debug_on) == -1) {

/* Log message; probably include the errno value. */
dae_error_puts(error_msg);
return;

}

tracing_on = 1;

return;
}

static void end_trace(void)
{

int debug_on = 0;
const char *error_msg =

″Subsystem des.ex.sock failed to take socket out of debug mode.\n″ ;

if (setsockopt(acpt_sockd, SOL_SOCKET, SO_DEBUG,
(char *) &debug_on, sizeof debug_on) == -1) {

/* Log message; probably include the errno value. */
dae_error_puts(error_msg);
return;

}

tracing_on = 0;

return;
}

Figure 153 (Part 6 of 7). An SRC Daemon Using Socket Communication
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static void refresh_config(void)
{

int config_fd;
int read_cnt;
const char *error_msg =

″Subsystem des.ex.sock failed to read its configuration file.\n″ ;

config_cnt = 0;

if ((config_fd = open(config_path, O_RDONLY)) == -1) {
/* Log message; probably include the errno value. */
dae_error_puts(error_msg);
return;

}

if ((read_cnt = read(config_fd, config_buf, sizeof config_buf)) == -1) {
/* Log message; probably include the errno value. */
(void) close(config_fd);
dae_error_puts(error_msg);
return;

}

config_cnt = read_cnt;

(void) close(config_fd);

return;
}

static void report_status(void)
{

dae_status_short();

dae_status_printf(″\nI′ ve seen %d client connections.\n″ ,  client_count);
dae_status_puts(tracing_on ? ″Tracing is on.\n″ : ″Tracing is off.\n″ ) ;
dae_status_printf(″Next refresh will read from %s.\n″ ,  config_path);

return;
}

Figure 153 (Part 7 of 7). An SRC Daemon Using Socket Communication

In the main routine, dae_init_SRC_sock is called to provide the daemon support
routines with information about the socket through which SRC requests are
expected and the addresses of routines that will handle SRC requests. The first
parameter to dae_init_SRC_sock points to an integer that holds a file descriptor.
When dae_init is executed, the value of this integer is interpreted as the file
descriptor with which the daemon would like the SRC socket associated. The
value specified in this example, -1, indicates no particular file descriptor is
desired. When dae_init returns, the integer′s value will be the actual file
descriptor with which the SRC socket is associated. Through the second
parameter of dae_init_SRC_sock, the daemon provides the addresses of routines
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that will handle SRC requests. The subsystem stop normal request will be
handled by normal_stop, the subsystem stop forced request by forced_stop, the
subsystem stop cancel request by cancel_stop, the subsystem trace on request
by begin_trace, the subsystem trace off request by end_trace, the subsystem
refresh request by refresh_config, and the subsystem long status request by
report_status. The third parameter to dae_init_SRC_sock is set to 1; this will
cause the cancel_stop routine to be installed as a signal handler such that if it
interrupts a restartable system call, the system call will be restarted
automatically.

The main routine in Figure 153 on page 261 calls the dae_init_prevent_zombies
routine. This daemon creates child processes, but does not care when they
terminate or if they succeeded. The call to dae_init_prevent_zombies will ensure
that this daemon does not create long-lasting zombie processes, and allows the
daemon-specific code to forget about, for the most part, the child processes once
they are created.

In Figure 153 on page 261, dae_init is called to actually initialize the daemon.
The value passed through the first parameter, DAE_P_SRC, causes dae_init to
succeed only if the daemon is running under SRC control. Once dae_init has
verified the daemon has been started by SRC, it will verify that file descriptor 0
is associated with a socket. It will then associate the socket with a different file
descriptor, and associate file descriptor 0 with /dev/null. The file descriptor
associated with the socket is returned through the pointer specified with the first
parameter of dae_init_SRC_sock.

In Figure 153, part �2�, the prepare_socket routine initializes the socket through
which the daemon will establish connections with clients. This socket should not
be confused with the socket through which the SRC will make requests of the
daemon. The socket through which SRC will make requests of the daemon is a
UNIX domain datagram socket that is initialized by srcmstr and associated with
file descriptor 0 of the daemon process just before the daemon program is
executed. The dae_init routine associates the socket with a file descriptor other
than 0. The socket through which the daemon will accept connection requests
from clients is a Internet domain stream socket that is initialized by the daemon
itself. Throughout Figure 153, the SRC request socket′s file descriptor is held in
the variable SRC_sockd, and the file descriptor of the socket though which client
connection requests are accepted is held in the variable acpt_sockd.

The prepare_socket routine sets up the Internet domain stream socket in a
standard fashion. It calls socket, bind, and listen. Notice that before calling
bind, it calls setsockopt to set the SO_REUSEADDR socket option. This allows the
daemon to be successfully restarted after being stopped by the SRC subsystem
stop normal, stop forced, and stop cancel requests. If the SO_REUSEADDR socket
option is not set, attempts to start the daemon after it had been stopped might
result in the bind routine returning the “address already in use” error.

Figure 153, part �3� shows the do_daemon_loop routine. This routine waits for a
request to arrive, handles the request, and then waits for another request to
arrive. The routine uses select with no time out value. The select call waits for
client connection requests through the socket whose file descriptor is in
acpt_sockd, and for SRC requests through the socket whose file descriptor is in
SRC_sockd. If the select routine indicates a connection can be established with a
client through the daemon connection socket, create_daemon_child is called to
establish the connection and to create a child process to serve the client. If the
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select routine indicates data can be read from the SRC request socket,
dae_SRC_req is called. The dae_SRC_req routine will process the SRC request, and
return.

The dae_SRC_req routine will read a request from the SRC request socket, and
determine what type of request is being made. If a request-handling routine for
the request had been specified on the call to dae_init_SRC_sock, the
request-handling routine is called. For example, if the request is a subsystem
long status request, the report_status routine is called. Once the report_status
routine returns to dae_SRC_req, dae_SRC_req sends a response to the destination
specified in the request. If dae_SRC_req reads a request for which the daemon
has not provided a request-handling routine, dae_SRC_req sends an error
response to the destination specified in the request.

Figure 153, part �4� shows the create_daemon_child routine. This routine calls
accept to establish a connection with a client, and creates a child process that
will serve the client. The child process calls the do_daemon_work routine, which
presumably serves the client as intended by the daemon. The do_daemon_work
routine is not shown, as its content depends totally on the service being
provided by the daemon.

Figure 153, part �5� shows the routines that will handle the SRC stop requests.
The normal_stop routine will, when invoked, set a global variable, stop_requested,
to indicate a stop request has been made. The do_daemon_loop routine
periodically looks at the setting of stop_requested to determine if the daemon is
to be stopped. Child processes are not terminated, since the semantics of the
SRC stop normal request is to allow the processing for current clients to
complete. The forced_stop and cancel_stop routines will, when invoked,
immediately terminate the daemon process and any child processes of the
daemon process. Terminating the child processes conforms with the intended
semantics of the SRC stop forced and stop cancel requests, since terminating
the child processes will terminate the processing for current clients. The child
processes are terminated by sending the SIGTERM signal to all processes in the
daemon ′s process group. In the forced_stop routine, the SIGTERM signal is first
ignored so the daemon process does not run the cancel_stop routine
unnecessarily. Changing the disposition of the SIGTERM signal is not necessary in
the cancel_stop routine, since the SIGTERM signal is blocked while cancel_stop is
executed. Since the cancel_stop routine will be used as the SIGTERM signal
handler for both the daemon process and the child processes, the routine must
base its actions on whether or not it is being run by the daemon. The routine
can make this determination by calling the dae_process_is_the_daemon routine.

Figure 153, part �6� shows the routines that will handle the SRC subsystem trace
request. The begin_trace routine is called when a subsystem trace on request is
received. The end_trace routine is called when a subsystem trace off request is
received. The begin_trace routine will use setsockopt to turn on the SO_DEBUG
socket option for the socket through which client connections are made. The
socket returned by the accept routine will inherit this option. The end_trace
routine will use setsockopt to turn off the SO_DEBUG socket option for the same
socket. Both these routines return an error message if the setsockopt routine
reports an error. Error messages are returned through the dae_error_puts
routine.

Figure 153, part �7� shows the routines that will handle the SRC subsystem
refresh and long status requests. The refresh_config routine handles the SRC
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subsystem refresh request. It reads the daemon′s configuration file. It returns
an error message by calling dae_error_puts, if the configuration file cannot be
read. Presumably, the contents of the configuration file will influence the
behavior of the child processes that are created to handle client requests. The
report_status routine provides the output for a subsystem long status request by
calling daemon support routines that allow for the specification of long status
output. Calling the dae_status_short routine causes the subsystem short status
to be included in the long status output. The report_status routine uses
dae_status_printf to specify output in a manner similar to printf, and
dae_status_puts to specify output in a manner similar to fputs. The routine
outputs the number of client connections the daemon has made, indicates
whether tracing is turned on or off, and outputs the name of the file that will be
read when the daemon receives a refresh request. Notice that the report_status
routine ignores the return values from dae_status_short, dae_status_printf, and
dae_status_puts. This is reasonable; it is comparable to ignoring the return
value from printf.

Figure 154 on page 271 shows how the daemon shown in Figure 153 on
page 261 can be controlled with SRC commands. First, the SRC definition of the
subsystem is done with mkssys. The example assumes the daemon program
exists as /usr/lpp/somelpp/bin/SRC.sock. The subsystem is defined with the
name des.ex.sock, in a group named des.ex. Since none of the -I, -m, or -S
flags were used with mkssys, the SRC will make requests of the subsystem
through a socket. The subsystem can be started, and short status can be
obtained. Requests (stop the daemon, provide long status, start tracing, end
tracing, and refresh the subsystem) succeed, since the daemon provides
routines to handle these requests. As expected from the daemon code, an
attempt to refresh the subsystem generates an error message when the
configuration file is missing.
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# mkssys -s des.ex.sock -p /usr/lpp/somelpp/bin/SRC.sock -u 0 \
-i /dev/null -o /dev/null -e /dev/null -G des.ex

0513-071 The des.ex.sock Subsystem has been added.

# startsrc -s des.ex.sock
0513-059 The des.ex.sock Subsystem has been started. Subsystem PID is 8418.

# lssrc -s des.ex.sock
Subsystem Group PID Status
 des.ex.sock des.ex 8418 active

# lssrc -ls des.ex.sock
Subsystem Group PID Status
 des.ex.sock des.ex 8418 active

 I′ ve seen 0 client connections.
 Tracing is off.
 Next refresh will read from /etc/des.ex.sock.conf.

# refresh -s des.ex.sock
0513-095 The request for subsystem refresh was completed successfully.

# rm /etc/des.ex.sock.conf

# refresh -s des.ex.sock
Subsystem des.ex.sock failed to read its configuration file.

# traceson -s des.ex.sock
0513-091 The request to turn on tracing was completed successfully.

# lssrc -ls des.ex.sock
Subsystem Group PID Status
 des.ex.sock des.ex 8418 active

 I′ ve seen 0 client connections.
 Tracing is on.
 Next refresh will read from /etc/des.ex.sock.conf.

# tracesoff -s des.ex.sock
0513-093 The request to turn off tracing was completed successfully.

# stopsrc -s des.ex.sock
0513-044 The stop of the des.ex.sock Subsystem was completed successfully.

Figure 154. Controlling the Socket Daemon with SRC

10.2.5 Running under the SRC: Subsystem-Defined Requests
Section 5.6.10, “Processing Subsystem-Defined Requests” on page 125
discusses how a subsystem may respond to requests delivered through the SRC
that are not actually defined by the SRC. Programs can be written to deliver
these subsystem-defined requests through the SRC. The meaning of the
requests and the data involved must be agreed upon by the program sending the
request and the subsystem responding to the request.

Chapter 10. Daemon Support Routines 271



10.2.5.1 Processing Subsystem-Defined Requests
The daemon support routines support the ability of a subsystem to respond to
requests delivered through the SRC but not defined by the SRC. This is
supported through the dae_other_req member of the dae_req_msq and dae_req_sock
structures, and the dae_init_SRC_msq, dae_init_SRC_sock, and dae_SRC_req
routines. See A.3, “dae_init_SRC_msq(3)” on page 325, A.4,
“dae_init_SRC_sock(3)” on page 328, and A.10, “dae_SRC_req(3)” on page 349,
the routine man pages, for details.

Figure 155 on page 273 shows a modification to the example presented in
Figure 153 on page 261, part �1�. The dae_other_req field of the SRC_rtns
structure is now given the address of a routine in the subsystem, other_requests.
Whenever dae_SRC_req reads a request from the SRC request socket that is not
an SRC-defined request but may be a subsystem-defined request, it will call the
other_requests routine. The other_requests routine is expected to process valid
subsystem-defined requests, and flag invalid requests.
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#include <unistd.h>
#include <dae.h>

#define SUBSYS_DAE_OFFSET 200

int stop_requested = 0;
int client_count = 0;
int acpt_sockd, SRC_sockd = -1;

.

.

.
static int other_requests(short request, short parm1, short parm2,

const void *parm3, int parm3_size);
static int prepare_socket(void);
static void do_daemon_loop(void);

int main(int argc, char **argv)
{

dae_parent_t parent = DAE_P_SRC;
dae_req_sock_t SRC_rtns;
dae_error_detail_t err_detail;
int rc;

SRC_rtns.dae_stop_normal = normal_stop;
SRC_rtns.dae_stop_forced = forced_stop;
SRC_rtns.dae_stop_cancel = cancel_stop;
SRC_rtns.dae_trace_begin = begin_trace;

 SRC_rtns.dae_trace_end = end_trace;
 SRC_rtns.dae_refresh = refresh_config;

SRC_rtns.dae_long_status = report_status;
 SRC_rtns.dae_other_req = other_requests;

 dae_init_prevent_zombies(parent, 1);
dae_init_SRC_sock(&SRC_sockd, &SRC_rtns, 1);

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
/* Log an error message using the information in err_detail. */
return SUBSYS_DAE_OFFSET + rc;

}

if (prepare_socket() == 0)
do_daemon_loop();

return 0;
}

Figure 155. Processing Subsystem-Defined Requests. This is a modification of Figure 153 on page 261, part �1�.
Some function prototypes have been removed due to space limitations.

The other_requests routine is called with five parameters. The first parameter,
request, is the number of the request received by the subsystem. The
parameters parm1 and parm2 are two signed short numbers that are parameters
for the request. Finally, the parameters parm3 and parm3_size provide access to
an additional request parameter of arbitrary data type and size. Clients sending
subsystem-defined SRC requests and subsystems receiving such requests must
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agree on the request number, the meaning of the parm1 and parm2 parameters,
whether additional data is sent via parm3, and the data type and size of such
data.

Figure 156 on page 275 shows the source code for the other_requests routine.
The subsystem defines three additional SRC requests that it will process:

• The request represented by the constant COLLECTSTATS will cause the
subsystem to start collecting some sort of statistics.

• The request represented by the constant NOSTATS will cause the subsystem to
stop collecting those statistics.

• The request represented by the constant CONFIGPATH will specify the
configuration file to be read when the subsystem receives the SRC refresh
request.
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#define COLLECTSTATS 256
#define NOSTATS 257
#define CONFIGPATH 258

int stat_long = 0; /* Boolean - extended statistics requested */
int stat_interval = -1; /* Statistics interval (seconds); -1 means no stats */

int other_requests(short request, short parm1, short parm2,
const void *parm3, int parm3_size)

{

if (request == COLLECTSTATS) {

stat_long = parm1;
stat_interval = (parm2 > 0) ? parm2 : 60;
dae_inform_printf(″Subsystem des.ex.sock will collect statistics ″

″every %d seconds.\n″ ,  stat_interval);
return 0;

} else if (request == NOSTATS) {

stat_long = 0;
stat_interval = -1;
dae_inform_puts(″Subsystem des.ex.sock will no longer ″

″collect statistics.\n″ ) ;
return 0;

} else if (request == CONFIGPATH) {

if (parm3_size > sizeof(config_path)) {
dae_error_printf(″Configuration file path too long! ″

″It is limited to %d characters.\n″ ,
MAXPATHLEN);

} else {
strcpy(config_path, parm3);
dae_inform_printf(″Configuration file path changed to %s.\n″ ,

config_path);
}

return 0;

}

return 1;
}

Figure 156. Source Code for the other_requests Routine

In Figure 156, the code that handles each request treats the request parameters
differently. The parameters parm1, parm2, and parm3 serve no purpose for the
NOSTATS request, and are ignored. For the COLLECTSTATS request, the parm1 and
parm2 parameters have meaning. The parm1 parameter is a Boolean that
indicates whether extended statistics are to be collected. The parm2 parameter
is expected to hold the sampling interval for the statistics collection. The parm3

Chapter 10. Daemon Support Routines 275



parameter has no meaning for the COLLECTSTATS request, and is ignored. For the
CONFIGPATH request, parm1 and parm2 have no meaning, but parm3 is expected to
point to a null terminated string containing the path name of the configuration
file the subsystem is to read when it receives a refresh request. Also,
parm3_size is expected to be set to the number of bytes occupied by the string,
including the byte taken by the null terminator.

The other_requests routine returns a value of 0 if it has received a request that is
recognized by the subsystem. If it receives a request not recognized by the
subsystem, it returns 1. This behavior is expected by the daemon support
routines. When a non-zero value is returned, the daemon support routines make
an appropriate error reply to the requestor. If the other_requests routine
encounters an error processing a recognized subsystem-defined request, it
should call dae_error_puts or dae_error_printf. In fact, the routine does so if the
path name parameter of the CONFIGPATH request is too long. The routine also
uses dae_inform_puts and dae_inform_printf to provide informational messages.

10.2.5.2 Creating Programs to Send Subsystem-Defined Requests
Chapter 12, “New SRC Program Support” on page 303 discusses how to create
programs that could be used to send the COLLECTSTATS, NOSTATS, and CONFIGPATH
requests to a subsystem.

10.2.5.3 Keeping SRC Request Numbers Unique
Care must be taken when a subsystem defines SRC requests. If two subsystems
use the same number to represent different requests, confusion could result.
For example, assume a subsystem defines two requests, “check for quorum”
and “do not check for quorum.” Two new programs would probably be created
to send these requests, say quorumon and quorumoff. Other programs would
probably be created to send the COLLECTSTATS and NOSTATS requests, say statson
and statsoff. If the request numbers used for “check for quorum” and “do not
check for quorum” were the same numbers that the des.ex.sock subsystem used
for COLLECTSTATS and NOSTATS, the statson and statsoff programs could be used
to turn quorum checking on and off in the subsystem that defined the quorum
requests, and the quorumon and quorumoff programs could be used to turn
statistics collection on and off in des.ex.sock. This would not be desirable. The
desired behavior would be for des.ex.sock to return an error when quorumon and
quorumoff are applied to it, and for the other subsystem to return an error when
statson and statsoff are applied to it.

The SRC provides no help in managing request numbers for subsystem-defined
requests. To avoid collisions in any SRC requests defined by Scalable
POWERparallel Systems, RS/6000 Division subsystems, a list of request number
assignments will be maintained by Scalable POWERparallel Systems, RS/6000
Division. Request numbers can be assigned to particular subsystems, a whole
LPP, or some unit between the two.

10.2.6 Ensuring Exclusivity
The dae_init_exclusive routine can be used to ensure that only one process on
the system is running a particular daemon. Figure 157 on page 278 shows a
modification to the example presented in Figure 153, part �1�. A call to
dae_init_exclusive is now made before the dae_init call. The second parameter
passed to dae_init_exclusive specifies the path name of the daemon executable,
and the third parameter is specified as 1. When dae_init executes, it will
generate a semaphore key by calling ftok, specifying the second and third
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dae_init_exclusive parameters as the parameters to ftok. The generated key
represents a semaphore that a process must lock in order to run this daemon
program. If dae_init cannot lock the semaphore, it will return with an error. As
seen in Figure 157 on page 278, if dae_init returns with an error, the program
will exit. If dae_init can lock the semaphore, it does not release its lock. The
semaphore should remain locked for the remainder of the lifetime of the daemon
process. When the daemon process terminates, the semaphore lock will be
removed automatically.
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#include <unistd.h>
#include <dae.h>

#define SUBSYS_DAE_OFFSET 200

int stop_requested = 0;
int client_count = 0;
int acpt_sockd, SRC_sockd = -1;

.

.

.

static int prepare_socket(void);
static void do_daemon_loop(void);

int main(int argc, char **argv)
{

dae_parent_t parent = DAE_P_SRC;
dae_req_sock_t SRC_rtns;
dae_error_detail_t err_detail;
int rc;

SRC_rtns.dae_stop_normal = normal_stop;
SRC_rtns.dae_stop_forced = forced_stop;
SRC_rtns.dae_stop_cancel = cancel_stop;
SRC_rtns.dae_trace_begin = begin_trace;

 SRC_rtns.dae_trace_end = end_trace;
 SRC_rtns.dae_refresh = refresh_config;

SRC_rtns.dae_long_status = report_status;
 SRC_rtns.dae_other_req = NULL;

dae_init_exclusive(parent, ″ /usr/lpp/somelpp/bin/SRC.sock″ ,  1) ;
dae_init_prevent_zombies(parent, 1);
dae_init_SRC_sock(&SRC_sockd, &SRC_rtns, 1);

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
/* Log an error message using the information in err_detail. */
return SUBSYS_DAE_OFFSET + rc;

}

if (prepare_socket() == 0)
do_daemon_loop();

return 0;
}

Figure 157. Using dae_init_exclusive. This is a modification of Figure 153 on page 261, part �1�. Some function
prototypes have been removed due to space limitations.

The definition of an SRC subsystem allows the subsystem to be specified as
allowing multiple instances or not. The functionality provided by
dae_init_exclusive is intended to supplement this SRC functionality, not replace
it. See A.9, “dae_init_exclusive(3)” on page 346, the dae_init_exclusive man
page, for more details.
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For rationale as to why a daemon needs to enforce its exclusivity requirements,
see 9.1, “Limitations of System Methods to Ensure Exclusivity” on page 231.

10.2.7 Setting the Paging Space Allocation Policy
The dae_init_psalloc routine can be used to set the paging space allocation
policy under which a daemon runs. Figure 158 on page 280 shows a
modification to the example presented in Figure 153, part �1�. A call to
dae_init_psalloc is now made before the dae_init call. The second parameter
passed to dae_init_psalloc specifies the paging space allocation policy desired.
The third parameter specifies the path name of the daemon executable, and the
fourth parameter specifies the arguments with which the program was invoked.
When dae_init executes, it will determine the paging space allocation policy in
effect. If the current policy is not the desired policy, dae_init will change the
policy. Changing the policy entails setting an environment variable and
re-executing the daemon program. See A.8, “dae_init_psalloc(3)” on page 342,
the dae_init_psalloc man page, for a discussion of the implications of
re-executing the daemon program.
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#include <unistd.h>
#include <dae.h>

#define SUBSYS_DAE_OFFSET 200

int stop_requested = 0;
int client_count = 0;
int acpt_sockd, SRC_sockd = -1;

.

.

.
static int prepare_socket(void);
static void do_daemon_loop(void);

int main(int argc, char **argv)
{

dae_parent_t parent = DAE_P_SRC;
dae_req_sock_t SRC_rtns;
dae_error_detail_t err_detail;
int rc;

SRC_rtns.dae_stop_normal = normal_stop;
SRC_rtns.dae_stop_forced = forced_stop;
SRC_rtns.dae_stop_cancel = cancel_stop;
SRC_rtns.dae_trace_begin = begin_trace;

 SRC_rtns.dae_trace_end = end_trace;
 SRC_rtns.dae_refresh = refresh_config;

SRC_rtns.dae_long_status = report_status;
 SRC_rtns.dae_other_req = NULL;

dae_init_psalloc(parent, DAE_A_EARLY, ″ /usr/lpp/somelpp/bin/SRC.sock″ ,
argv);

dae_init_exclusive(parent, ″ /usr/lpp/somelpp/bin/SRC.sock″ ,  1) ;
dae_init_prevent_zombies(parent, 1);
dae_init_SRC_sock(&SRC_sockd, &SRC_rtns, 1);

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
/* Log an error message using the information in err_detail. */
return SUBSYS_DAE_OFFSET + rc;

}

if (prepare_socket() == 0)
do_daemon_loop();

return 0;
}

Figure 158. Using dae_init_psalloc. This is a modification of Figure 153 on page 261, part �1�. Some function
prototypes have been removed due to space limitations.

For information about AIX paging space allocation policies, see Chapter 8, “AIX
Paging Space Allocation” on page 203.
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10.2.8 Protection from Low Paging Space Termination
The dae_init_lowps routine can be used to install a signal handler for the
SIGDANGER signal that will protect the daemon from being terminated when the
system is running low on paging space. Figure 159 on page 282 shows a
modification to the example presented in Figure 153 on page 261, part �1�. A
call to dae_init_lowps is now made before the dae_init call. The second
parameter specified on the call to dae_init_lowps is NULL; this means a signal
handler that just returns will be installed for SIGDANGER. The third parameter
specified is 1, requesting that the signal handler be installed so that it will restart
restartable interrupted system calls.

For information about why a daemon installs a signal handler for the SIGDANGER
signal, see Chapter 8, “AIX Paging Space Allocation” on page 203.
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#include <unistd.h>
#include <dae.h>

#define SUBSYS_DAE_OFFSET 200

int stop_requested = 0;
int client_count = 0;
int acpt_sockd, SRC_sockd = -1;

.

.

.
static int prepare_socket(void);
static void do_daemon_loop(void);

int main(int argc, char **argv)
{

dae_parent_t parent = DAE_P_SRC;
dae_req_sock_t SRC_rtns;
dae_error_detail_t err_detail;
int rc;

SRC_rtns.dae_stop_normal = normal_stop;
SRC_rtns.dae_stop_forced = forced_stop;
SRC_rtns.dae_stop_cancel = cancel_stop;
SRC_rtns.dae_trace_begin = begin_trace;

 SRC_rtns.dae_trace_end = end_trace;
 SRC_rtns.dae_refresh = refresh_config;

SRC_rtns.dae_long_status = report_status;
 SRC_rtns.dae_other_req = NULL;

dae_init_lowps(parent, NULL, 1);
dae_init_exclusive(parent, ″ /usr/lpp/somelpp/bin/SRC.sock″ ,  1) ;
dae_init_prevent_zombies(parent, 1);
dae_init_SRC_sock(&SRC_sockd, &SRC_rtns, 1);

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
/* Log an error message using the information in err_detail. */
return SUBSYS_DAE_OFFSET + rc;

}

if (prepare_socket() == 0)
do_daemon_loop();

return 0;
}

Figure 159. Using dae_init_lowps. This is a modification of Figure 153 on page 261, part �1�. Some function
prototypes have been removed due to space limitations.
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10.2.9 Supporting a Daemon under inetd or the SRC
Each example presented so far has assumed that a daemon is always started by
inetd, or it is never started by inetd. While this is usually the case, it is possible
to write a daemon that can be started with or without inetd. Consider the
program presented in Figure 153 on page 261. That program is designed with
the assumption that the daemon is never started by inetd; it establishes its own
connections with clients. If the program was modified to run with or without
inetd, it would have to know how it was started. When it is not started by inetd,
it should establish client connections and create a child process for each
connected client. When it is started by inetd, it should not establish client
connections nor should it create child processes, because inetd is providing that
function.

Figure 160 on page 284 shows a modification to the code presented in
Figure 153 on page 261, part �1�, that allows the daemon to function correctly
with or without the help of inetd. Notice that the value passed to all routines
with the parent parameter specifies the SRC and inetd, with one exception. The
call to dae_init_exclusive does not specify inetd for the parent parameter. When
a concurrent server is running under the control of inetd, multiple instances are
desired. When a concurrent server is establishing client connections itself, it
only wants one process running as the “connecting” daemon at a time. This is
accomplished by calling dae_init_exclusive with the parent parameter set to
DAE_P_SRC. The exclusive “connecting” daemon can create as many child
processes as it wants.
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#include <unistd.h>
#include <dae.h>

#define SUBSYS_DAE_OFFSET 200

int stop_requested = 0;
int client_count = 0;
int acpt_sockd, SRC_sockd = -1;

.

.

.
static int prepare_socket(void);
static void do_daemon_loop(void);
static void do_daemon_work(int serv_sockd);

int main(int argc, char **argv)
{

dae_parent_t parent = DAE_P_SRC | DAE_P_INETD;
dae_req_sock_t SRC_rtns;
dae_error_detail_t err_detail;
int rc;

.

.

.

dae_init_exclusive(DAE_P_SRC, ″ /usr/lpp/somelpp/bin/SRC.sock″ ,  1) ;
dae_init_lowps(parent, NULL, 1);
dae_init_prevent_zombies(parent, 1);
dae_init_SRC_sock(&SRC_sockd, &SRC_rtns, 1);

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
/* Log an error message using the information in err_detail. */
return SUBSYS_DAE_OFFSET + rc;

}

if (parent == DAE_P_SRC) {
if (prepare_socket() == 0)

do_daemon_loop();
} else {

do_daemon_work(0);
}

return 0;
}

Figure 160. Using dae_init_exclusive Conditionally. This is a modification of Figure 153 on page 261, part �1�.
Some function prototypes have been removed due to space limitations.

Notice that the dae_init routine indicates how the daemon was started by
modifying the integer pointed to by the first parameter. The caller of dae_init
can then examine that integer to determine if actions should be taken that
depend on how the daemon was started. In the example in Figure 160, the main
routine looks at the value of the parent variable after dae_init returns to
determine what it should do next.
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10.2.10 Logging Detail Data
When the dae_init routine detects an error, it does not log an error log entry. If
it did, daemons that used the daemon support routines would create similar
error log entries that would be difficult to distinguish from each other. So,
dae_init returns detailed information about an error it encounters through its
err_detail parameter. If a daemon receives an error from dae_init, it should log
an entry to the error log that contains the detailed data returned by dae_init.
Figure 161 shows a code fragment that logs detailed error data returned from
dae_init. The code fragment assumes the subsystem name is subsys01, and
passes the subsystem name as the resource parameter to ppslog. The code
fragment also assumes an error record template was created with the definition
shown in Figure 162 on page 286. The ppslog routine is used within Scalable
POWERparallel Systems, RS/6000 Division, to write to the error log and to the
system log. Code developed outside Scalable POWERparallel Systems, RS/6000
Division, can use the errlog routine to write to the error log, and the syslog
routine to write to the system log. The man page for errlog is in AIX Version 4.1:
Technical Reference, Volume 1: Base Operating System and Extensions,
SC23-2614. The man page for syslog is in AIX Version 4.1: Technical Reference,
Volume 2: Base Operating System and Extensions, SC23-2615.

#include <dae.h>
#include <ppslog.h>
#include <subsys01_er.h>

.

.

.

const char *lpp_name = ″<put your lpp name here>″ ;
char log_buf[1024];
int buflen;

.

.

.

if ((rc = dae_init(&parent, &err_detail)) != DAE_E_OK) {
sprintf(log_buf, ″%s: \″%s\″ ,  detected in %s,%s at line %d″ ,

err_detail.dae_routine, err_detail.dae_error_string,
err_detail.dae_filename, err_detail.dae_fileversion,
err_detail.dae_fileline);

buflen = strlen(log_buf);

ppslog(PPS_ERROR, ERRID_SUBSYS01_ER, ″subsys01″ ,  log_buf,
buflen, __FILE__, __LINE__, ″%I%″ ,  lpp_name, ″%s\n″ ,
log_buf);

return SUBSYS_DAE_OFFSET + rc;
}
.
.
.

Figure 161. Logging Detailed Error Data Returned by the dae_init Routine
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+SUBSYS01_ER:
comment = ″subsys01″
class = S
Log = True
Report = True
Alert = False
Err_Type = PERM
Err_Desc = 2100
Prob_Causes = 1001
Fail_Causes = 1000
Fail_Actions = 1000
Detail_Data = 80,00A2,ALPHA
Detail_Data = 150,001E,ALPHA

Figure 162. Error Record Template for Code. See Figure 161.

10.2.11 Cleaning Up in a Child Process
If a daemon uses the daemon support routines and then creates a child process,
the daemon developer should consider what the child process has inherited from
its parent process. For example, the child process has inherited signal
dispositions. If the signal dispositions of the parent do not suit the child process,
the child process might need to change its signal dispositions. An alternative for
installed signal handlers is to call dae_process_is_the_daemon to determine if the
process running the signal handler is the process that initialized itself as a
daemon with dae_init. Installed signal handlers will be removed if the child
process executes another program.

If a daemon is running under the SRC, and receives requests from the SRC
through a socket, a child process of the daemon will inherit the SRC socket file
descriptor. The child process might want to close this file descriptor. The child
process should not send or receive data through the file descriptor. The SRC
socket file descriptor will be closed if the child process executes another
program.

10.3 Linking with the Daemon Support Routines
This section discusses how to link a daemon with the daemon support routines.

10.3.1 General Comments
On an AIX system, the daemon support routines can be compiled to support or
not support sockets. When the routines are compiled with the _BSD macro
defined, they will support sockets. When the routines are compiled without the
_BSD macro defined, they will not support sockets. The daemon support routines
use sockets for two purposes: to determine if the daemon was started by inetd,
and to receive requests from the SRC sent through sockets. So, if the daemon
support routines are compiled with the _BSD macro defined, they will recognize
when a daemon is started by inetd, and they will support a daemon under the
SRC that receives requests from the SRC using sockets. Conversely, if the
daemon support routines are compiled without the _BSD macro defined, they will
not recognize when a daemon is started by inetd, and they will not support a
daemon under the SRC that receives requests from the SRC using sockets.
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If a program is statically linked with the daemon support routines, and the
daemon support routines were compiled with the macro _BSD defined, the
program should be linked with the libsrc.a, libbsd.a, and libc.a libraries. The
libbsd.a library must be specified to the linker before the libc.a library.

If a program is statically linked with the daemon support routines, and the
daemon support routines were compiled without the macro _BSD defined, the
program should be linked with the libsrc.a and libc.a libraries.

If a program is dynamically linked with the daemon support routines, there are
no special requirements for linking the program.

When a program is linked with the libbsd.a library, the behavior of certain
system routines will differ from their expected behavior on systems complying
with X/OPEN standards. If a program is to be linked with the libbsd.a l ibrary
solely for the purpose of linking with a version of the daemon support routines
that support socket communications from the SRC, the programmer should be
aware that some system routines called by the program may exhibit BSD
behavior.

10.3.2 Linking With the Diskette Code
Once you follow the instructions in Appendix C, “Loading the Diskette” on
page 395, you will have access to the source code for the daemon support
routines. To build libdae_bsd.a, a library containing a version of the daemon
support routines that will support sockets, follow the instructions in
dae/src/libdae_bsd/README. To build libdae.a, a library containing a version of
the daemon support routines that will not support sockets, follow the instructions
in dae/src/libdae/README.

The following discussion assumes you have built and installed the libraries as
instructed in the README files without changing the make files or the install
directories. The make files cause these libraries to be built as shared libraries.

Let′s consider how to build two programs, SRC.msq and SRC.sock. The source for
the SRC.msq program is shown in Figure 151 on page 256. The program is
designed to accept SRC requests through a message queue. The SRC.msq
program does not need support for socket communication from the SRC, does
not expect to be under the control of inetd, and has no need for any BSD
functionality. Therefore, it is linked with the libdae.a library. The source for the
SRC.sock program is shown in Figure 153 on page 261. The program is designed
to accept SRC requests through a socket. Since the SRC.sock program needs
support for socket communication from the SRC, it must be linked with the
libdae_bsd.a library.

The SRC.msq and SRC.sock programs can be compiled and linked with the
commands shown in Figure 163 on page 288.
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cc -I/usr/local/include SRC.msq.c -o SRC.msq \
-L/usr/local/lib -ldae

cc -D_BSD=44 -I/usr/local/include SRC.sock.c -o SRC.sock \
-L/usr/local/lib -ldae_bsd -lbsd

Figure 163. Linking with libdae_bsd.a and libdae.a (without ADE)

10.3.3 Linking Within the AIX 4.1 Development Environment (ADE)
In Scalable POWERparallel Systems, RS/6000 Division, two libraries of the
daemon support routines are built within the ADE50 environment. The
libdae_bsd.a library contains support for sockets. The libdae.a library does not
contain support for sockets. If a program requires support for socket
communication from the SRC, expects to be under the control of inetd, or needs
any BSD functionality, it should be linked with the libdae_bsd.a library;
otherwise, it should be linked with the libdae.a library. Both libraries are built
such that they can be statically linked with programs calling the daemon support
routines. A program linking with the libdae_bsd.a library must also be linked
with the libsrc.a, libbsd.a, and libc.a libraries. A program linking with the
libdae.a library must also be linked with the libsrc.a and libc.a libraries.

Let′s consider how to build two programs, SRC.msq and SRC.sock. The source for
the SRC.msq program is shown in Figure 151 on page 256. The program is
designed to accept SRC requests through a message queue. The SRC.msq
program does not need support for socket communication from the SRC, does
not expect to be under the control of inetd, and has no need for any BSD
functionality. Therefore, it is linked with the libdae.a library. The source for the
SRC.sock program is shown in Figure 153 on page 261. The program is designed
to accept SRC requests through a socket. Since the SRC.sock program needs
support for socket communication from the SRC, it must be linked with the
libdae_bsd.a library.

Figure 164 on page 289 shows an example of a make file for the ADE51

environment that can be used to build SRC.msq and SRC.sock. Note that the make
file variable SRC.sock.o_CFLAGS is set to the value -D_BSD=44. This will cause the
SRC.sock.c file to be compiled with the _BSD macro defined to the value 44. This
specifies 4.4BSD behavior, and matches how the source files of libdae_bsd.a are
compiled. Note that the SRC.sock program will be linked with the libdae_bsd.a,
libsrc.a, libbsd.a, and libc.a libraries. External references will be resolved by
searching the libraries in the order mentioned. The libc.a library is searched by
default, and does not have to be listed explicitly in the SRC.sock_LIBS make file
variable. Also, note that the SRC.msq program will be linked with the libdae.a,
libsrc.a, and libc.a libraries, based on the value of the SRC.msq_LIBS make file
variable.

50 The AIX 4.1 Development Environment (ADE) is an internal environment for building and packaging AIX.

51 This section assumes prior knowledge of the AIX 4.1 Development Environment (ADE), particularly the use of make files in that
environment.
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$ pwd
/u/agar/sb_dae4/src/example

$ cat Makefile
PROGRAMS = SRC.msq SRC.sock

SRC.sock.o_CFLAGS = -D_BSD=44

SRC.msq_LIBS = -ldae -lsrc
SRC.sock_LIBS = -ldae_bsd -lsrc -lbsd

IDIR=/usr/lpp/somelpp/bin/
ILIST = ${PROGRAMS}

MAKEFILE_DEPENDENCY = Makefile

.include <${RULES_MK}>

Figure 164. A make File for Linking with libdae_bsd.a and libdae.a in ADE

Figure 165 on page 290 shows the SRC.msq program being built. The C compiler,
cc, is invoked twice, once to create SRC.msq.o by compiling SRC.msq.c, and once
to link SRC.msq from SRC.msq.o and the specified library routines. Note that -ldae
and -lsrc are specified when SRC.msq is linked. Thus, the libdae.a, libsrc.a, and
libc.a libraries are searched, in that order, when external references are
resolved.
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$ pwd
/u/agar/sb_dae4/src/example

$ build SRC.msq
relative path: ./example.
mkdir ../../obj/power/example
cd ../../obj/power/example
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/echo ″**** Using versi
on cset 3.0.0.0 of cc to build SRC.msq.o ****\n″ >&2 ; LANG=En_US LIBPATH=/proj
ect/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib:/project/sprel2.4/b
uild/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib NLSPATH=/project/sprel2.4/build/r
2_4t6d6/ode_tools/power/usr/lib/nls/msg/%L/%N:/afs/aix.kingston.ibm.com/rs_aix3
2/prod/apps/cmvc/2.2.0.1/usr/lpp/cmvc/msg/%L/%N:/usr/lib/nls/msg/%L/%N:/usr/lib
/nls/msg/prime/%N /project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/cc -
F/project/sprel2.4/build/r2_4t6d6/ode_tools/power/etc/xlC.cfg -qhalt=E -c -D_
IBMR2 -D_POWER -D_AIX -DNLS -D_NLS -DMSG -D__STR31__ -Daiws -D_POWER_RS -D_POWE
R_PC -D_POWER_RS1 -D_POWER_RS2 -D_POWER_RSC -D_POWER_601 -D_POWER_603 -D_POWER_
604 -D_THREADS -DSPAIX411 -DSPAIX41 -M -O -I. -I/u/agar/sb_dae4/src/exampl
e -I/project/sprel2.4/build/r2_4t6d6/src/example -I/u/agar/sb_dae4/export/powe
r/usr/include -I/project/sprel2.4/build/r2_4t6d6/export/power/usr/include -I/u/
agar/sb_dae4/ode_tools/power/usr/lpp/xlc/usr/include -I/project/sprel2.4/build/
r2_4t6d6/ode_tools/power/usr/lpp/xlc/usr/include ../../../src/example/SRC.msq.c
 || ( rc=$?; /project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/rm -f SRC
.msq.u ; exit $rc )
**** Using version cset 3.0.0.0 of cc to build SRC.msq.o ****

″ . . / . . / . . / src/example/SRC.msq.c″ ,  line 8.10: 1506-112 (W) Duplicate type qualif
ier volatile ignored.
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/echo ″**** Using versi
on cset 3.0.0.0 of cc to build SRC.msq ****\n″ >&2 ; LANG=En_US LIBPATH=/projec
t/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib:/project/sprel2.4/bui
ld/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib NLSPATH=/project/sprel2.4/build/r2_
4t6d6/ode_tools/power/usr/lib/nls/msg/%L/%N:/afs/aix.kingston.ibm.com/rs_aix32/
prod/apps/cmvc/2.2.0.1/usr/lpp/cmvc/msg/%L/%N:/usr/lib/nls/msg/%L/%N:/usr/lib/n
ls/msg/prime/%N /project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/cc -F/
project/sprel2.4/build/r2_4t6d6/ode_tools/power/etc/xlC.cfg -qhalt=E -o SRC.ms
q.X -s -L/u/agar/sb_dae4/export/power/usr/lib -L/u/agar/sb_dae4/export/
power/usr/ccs/lib -L/project/sprel2.4/build/r2_4t6d6/export/power/usr/lib -L/pr
oject/sprel2.4/build/r2_4t6d6/export/power/usr/ccs/lib -L/u/agar/sb_dae4/ode_t
ools/power/usr/lpp/xlc/usr/lib -L/u/agar/sb_dae4/ode_tools/power/usr/lpp/xlc/us
r/ccs/lib -L/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlc/usr/li
b -L/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlc/usr/ccs/lib -
L. SRC.msq.o -m -ldae -lsrc >libdepend.mk.out
**** Using version cset 3.0.0.0 of cc to build SRC.msq ****

/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/mv SRC.msq.X SRC.msq
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/md -rm -all .

Figure 165. Building the SRC.msq Program

Figure 166 on page 291 shows the SRC.sock program being built. The C
compiler, cc, is invoked twice, once to create SRC.sock.o by compiling
SRC.sock.c, and once to link SRC.sock from SRC.sock.o and the specified library
routines. Note that -D_BSD=44 is specified when SRC.sock.c is compiled. Note
that -ldae_bsd, -lsrc, and -lbsd are specified when SRC.sock is linked. Thus, the
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libdae_bsd.a, libsrc.a, libbsd.a, and libc.a libraries are searched, in that order,
when external references are resolved.

$ pwd
/u/agar/sb_dae4/src/example

$ build SRC.sock
relative path: ./example.
cd ../../obj/power/example
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/echo ″**** Using versi
on cset 3.0.0.0 of cc to build SRC.sock.o ****\n″ >&2 ; LANG=En_US LIBPATH=/pro
ject/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib:/project/sprel2.4/
build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib NLSPATH=/project/sprel2.4/build/
r2_4t6d6/ode_tools/power/usr/lib/nls/msg/%L/%N:/afs/aix.kingston.ibm.com/rs_aix
32/prod/apps/cmvc/2.2.0.1/usr/lpp/cmvc/msg/%L/%N:/usr/lib/nls/msg/%L/%N:/usr/li
b/nls/msg/prime/%N /project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/cc
-F/project/sprel2.4/build/r2_4t6d6/ode_tools/power/etc/xlC.cfg -qhalt=E -c -D
_IBMR2 -D_POWER -D_AIX -DNLS -D_NLS -DMSG -D__STR31__ -Daiws -D_POWER_RS -D_POW
ER_PC -D_POWER_RS1 -D_POWER_RS2 -D_POWER_RSC -D_POWER_601 -D_POWER_603 -D_POWER
_604 -D_THREADS -DSPAIX411 -DSPAIX41 -M -O -D_BSD=44 -I. -I/u/agar/sb_dae4/
src/example -I/project/sprel2.4/build/r2_4t6d6/src/example -I/u/agar/sb_dae4/e
xport/power/usr/include -I/project/sprel2.4/build/r2_4t6d6/export/power/usr/inc
lude -I/u/agar/sb_dae4/ode_tools/power/usr/lpp/xlc/usr/include -I/project/sprel
2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlc/usr/include ../../../src/example
/SRC.sock.c || ( rc=$?; /project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bi
n/rm -f SRC.sock.u ; exit $rc )
**** Using version cset 3.0.0.0 of cc to build SRC.sock.o ****

/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/echo ″**** Using versi
on cset 3.0.0.0 of cc to build SRC.sock ****\n″ >&2 ; LANG=En_US LIBPATH=/proje
ct/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib:/project/sprel2.4/bu
ild/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib NLSPATH=/project/sprel2.4/build/r2
_4t6d6/ode_tools/power/usr/lib/nls/msg/%L/%N:/afs/aix.kingston.ibm.com/rs_aix32
/prod/apps/cmvc/2.2.0.1/usr/lpp/cmvc/msg/%L/%N:/usr/lib/nls/msg/%L/%N:/usr/lib/
nls/msg/prime/%N /project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/cc -F
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/etc/xlC.cfg -qhalt=E -o SRC.s
ock.X -s -L/u/agar/sb_dae4/export/power/usr/lib -L/u/agar/sb_dae4/expor
t/power/usr/ccs/lib -L/project/sprel2.4/build/r2_4t6d6/export/power/usr/lib -L/
project/sprel2.4/build/r2_4t6d6/export/power/usr/ccs/lib -L/u/agar/sb_dae4/ode
_tools/power/usr/lpp/xlc/usr/lib -L/u/agar/sb_dae4/ode_tools/power/usr/lpp/xlc/
usr/ccs/lib -L/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlc/usr/
lib -L/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlc/usr/ccs/lib
 -L. SRC.sock.o -m -ldae_bsd -lsrc -lbsd >libdepend.mk.out
**** Using version cset 3.0.0.0 of cc to build SRC.sock ****

/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/mv SRC.sock.X SRC.sock
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/md -rm -all .

Figure 166. Building the SRC.sock Program
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10.4 Porting the Daemon Support Routines
The daemon support routines have been tested on AIX systems. However, they
have been written with portability to other UNIX systems in mind. The strategy
used is described in 2.2, “Writing Programs for Portability” on page 14. Code
similar to that shown in Figure 6 on page 15, Figure 7 on page 16, and Figure 8
on page 17 occurs in a daemon support routine header file, dae_std.h, to
organize the support for portability. Currently supported systems are AIX with
BSD compatibility, AIX without BSD compatibility, systems meeting the
requirements specified for XPG4 X/OPEN UNIX conformance, systems meeting
the requirements specified for XPG4 BASE conformance that also support POSIX
job control, and systems meeting the requirements specified for XPG3
conformance that also support POSIX job control. If the daemon support
routines are actually ported to a non-AIX system, changes may be needed to the
daemon support routines.

10.5 Multi-Threaded Daemons and the Daemon Support Routines
It is expected that some daemons written by Scalable POWERparallel Systems,
RS/6000 Division, will be multi-threaded. Unfortunately, the library routines
provided by AIX to support communications between the SRC and
SRC-controlled daemons are not thread-safe. Until those routines are made
thread-safe, the daemon support routines may not be able to support
multi-threaded daemons.

10.6 Man Pages for the Daemon Support Routines
The following man pages are provided for the daemon support routines:

• A.1, “dae_init(3)” on page 316

• A.2, “dae_init_SRC_sig(3)” on page 321

• A.3, “dae_init_SRC_msq(3)” on page 325

• A.4, “dae_init_SRC_sock(3)” on page 328

• A.5, “dae_init_term_sig(3)” on page 336

• A.6, “dae_init_prevent_zombies(3)” on page 338

• A.7, “dae_init_lowps(3)” on page 340

• A.8, “dae_init_psalloc(3)” on page 342

• A.9, “dae_init_exclusive(3)” on page 346

• A.10, “dae_SRC_req(3)” on page 349

• A.11, “dae_status_short(3)” on page 351

• A.12, “dae_status_puts(3)” on page 354

• A.13, “dae_status_printf(3)” on page 357

• A.14, “dae_margin_puts(3)” on page 360

• A.15, “dae_margin_printf(3)” on page 364

• A.16, “dae_inform_puts(3)” on page 368

• A.17, “dae_inform_printf(3)” on page 371

• A.18, “dae_error_puts(3)” on page 374
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• A.19, “dae_error_printf(3)” on page 377

• A.20, “dae_process_is_the_daemon(3)” on page 380

• A.21, “dae_fopen(3)” on page 381

• A.22, “DAE_M_STOP(3)” on page 382
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Chapter 11. SRC Notification Support Programs

This chapter provides justifications for using a standard set of notification
programs. It then describes the set of programs developed within Scalable
POWERparallel Systems, RS/6000 Division, and how those programs can be
used.

11.1 Introduction to the SRC Notification Support Programs
The SRC notification support programs are provided to help subsystems with
their notification methods. One program provided, dae_notify, is a generic
notification method. When dae_notify is executed because it is installed as the
SRC notification method of a subsystem that has just failed, it takes the following
steps:

• It looks for an entry in the AIX error log that describes the abnormal
termination of the failing subsystem.

• It looks for a “stage 1” user exit program associated with the failing
subsystem, or with the group to which the failing subsystem belongs. If such
a program is found, it is executed.

• It looks for a subsystem-supplied notification program associated with the
failing subsystem, or with the group to which the failing subsystem belongs.
If such a program is found, it is executed.

• It looks for a “stage 2” user exit program associated with the failing
subsystem, or with the group to which the failing subsystem belongs. If such
a program is found, it is executed.

The user exit programs and the subsystem-supplied notification program are
executed with the following information provided as arguments:

• The failing subsystem′s name
• The name of the group to which the failing subsystem belongs
• The sequence number of the AIX error log entry that describes the abnormal

termination of the failing subsystem
• The exit status of the failing subsystem
• The current value of the notification method return value

It is assumed that the user exit programs will typically be used to communicate
the failure of the subsystem to someone. A program provided, dae_msg, may be
executed from the user exit programs. The dae_msg program may receive as
arguments the name of the failing subsystem, the name of the group to which
the failing subsystem belongs, the sequence number of the AIX error log entry
describing the abnormal termination of the failing subsystem, and the exit status
of the failing subsystem. It can generate short or long messages describing the
reason for the abnormal termination. Whether a short or long message is
generated is determined by flags specified when dae_msg is executed. The short
message is a textual interpretation of the subsystem exit status. The long
message includes the short message, and the text from the AIX error log.
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11.2 Examples of Using the SRC Notification Support Programs
Note: Most of this chapter assumes that the SRC notification support programs
being used are installed in the /usr/lpp/ssp/bin directory. Refer to 11.3,
“Building and Shipping the SRC Notification Support Programs” on page 299 for
information about the install directory of the SRC notification support programs.

The first example presented is for a subsystem, subsys01, that includes a
notification program supplied by Scalable POWERparallel Systems, RS/6000
Division. The example assumes the supplied notification program is installed in
the directory /usr/lpp/somelpp/bin. When the subsys01 subsystem is installed, an
object in the SRCnotify object class should be created. Figure 167 shows the
mknotify command that would create such an object. Note that the program
specified for the notify method is dae_notify in /usr/lpp/ssp/bin. The dae_notify
program is supplied with the name of the directory to be searched for the
supplied subsys01 notification program through the argument of the -s flag. The
argument of the -u flag specifies the name of the directory to be searched for
user exit programs for the subsys01 subsystem. The output from the odmget
command is consistent with the arguments that were used with the mknotify
command.

# mknotify -n subsys01 \
-m ″ /usr/lpp/ssp/bin/dae_notify -s /usr/lpp/somelpp/bin -u /usr/local/bin″

# odmget -q ″notifyname = ′ subsys01′ ″  SRCnotify

SRCnotify:
notifyname = ″subsys01″
notifymethod = ″ /usr/lpp/ssp/bin/dae_notify -s /usr/lpp/somelpp/bin -u /usr/local/bin″

# ls -1 /usr/local/bin/subsys01.*
/usr/local/bin/subsys01.userexit1

# ls -1 /usr/lpp/somelpp/bin/subsys01.*
/usr/lpp/somelpp/bin/subsys01.sysaction

# cat /usr/local/bin/subsys01.userexit1
#!/bin/ksh

/usr/lpp/ssp/bin/dae_msg -l ″$1″ ″$3″ ″$4″  |  /usr/bin/mail -s ″$1 failed!″ root

exit ″$5″

# cat /usr/lpp/somelpp/bin/subsys01.sysaction
#!/bin/ksh

# Takes some subsystem specific recovery actions that are not shown here.

exit ″$5″

Figure 167. Defining a Notification Method Using the dae_notify Program

The output of the first ls command in Figure 167 shows that the /usr/local/bin
directory contains the subsys01.userexit1 program, the “phase 1” user exit
program presumably created by the system administrator. The output of the
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second ls command in Figure 167 shows that the /usr/lpp/somelpp/bin directory
contains the subsys01.sysaction program, the notification program supplied by
Scalable POWERparallel Systems, RS/6000 Division, for subsys01. Looking at the
contents of the user exit program reveals it is a Korn shell script that sends a
long message generated by dae_msg to the root user through mail. The supplied
notification program is a Korn shell script that takes some subsystem unique
actions, which are not shown in the example. Notice that both programs exit
with the notification method return value supplied in the fifth argument.

Figure 168 shows the subsys01 subsystem being started with the startsrc
command, and being killed by sending the SIGUSR1 signal to the program.
Apparently, the subsys01 subsystem did not have a signal handler installed for
the SIGUSR1 signal, so it was terminated when the signal was received. The
lssrc commands show that subsystem was running before receiving the signal,
and not running after it received the signal.

# startsrc -s subsys01
0513-059 The subsys01 Subsystem has been started. Subsystem PID is 8542.

# lssrc -s subsys01
Subsystem Group PID Status
 subsys01 daes 8542 active

# kill -USR1 8542

# lssrc -s subsys01
Subsystem Group PID Status
 subsys01 daes inoperative

Figure 168. Forcing the subsys01 Subsystem to Terminate Abnormal ly

When the subsys01 subsystem was killed by the SIGUSR1 signal, the srcmstr
daemon should have respawned the subsystem, or executed the subsystem′s
notification method. This example assumes that the subsys01 subsystem was
defined not to be respawned. Therefore, the srcmstr daemon should have run
the notification method for subsys01. The notification method should have been
run with the command:

/usr/lpp/ssp/bin/dae_notify -s /usr/lpp/somelpp/bin \
-u /usr/local/bin subsys01 daes

This assumes the subsys01 subsystem is defined to be in the daes group. The
dae_notify program should have found the subsys01.userexit1 program in
/usr/local/bin, and executed it. That program should have executed dae_msg to
generate a message and executed mail to deliver the message to the root user.
Next, the dae_notify program should have found the subsys01.sysaction program
in /usr/lpp/somelpp/bin, and executed that program. Finally, the dae_notify
program should have searched /usr/local/bin for the program
subsys01.userexit2. Having failed to find it, dae_notify should have looked for
daes.userexit2 in the same directory. Since no “phase 2” user exit programs
should have been found for the subsystem, dae_notify should have continued
with its processing, and terminated. If all this happened, there should be a mail
message waiting for the root user. Figure 169 on page 298 shows the message
waiting for the root user.

Chapter 11. SRC Notification Support Programs 297



From root Sat May 13 17:53:51 1995
Received: by it1n13.aix.kingston.ibm.com (AIX 4.1/UCB 5.64/4.03)

id AA07294; Sat, 13 May 1995 17:53:51 -0400
Date: Sat, 13 May 1995 17:53:51 -0400
From: root
Message-Id: <9505132153.AA07294@it1n13.aix.kingston.ibm.com>
To: root
Subject: subsys01 failed!

Subsystem ″subsys01″ terminated abnormally; subsystem terminated by signal 30.

AIX error log entry for ″subsys01″ :
---------------------------------------------------------------------------
LABEL: SRC
IDENTIFIER: E18E984F

Date/Time: Sat May 13 17:53:49
Sequence Number: 324
Machine Id: 000175951000
Node Id: it1n13
Class: S
Type: PERM
Resource Name: SRC

Description
SOFTWARE PROGRAM ERROR

Probable Causes
APPLICATION PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
PERFORM PROBLEM RECOVERY PROCEDURES

Detail Data
SYMPTOM CODE

0
SOFTWARE ERROR CODE

-9017
ERROR CODE

30
DETECTING MODULE
′ srchevn.c′ @line:′272′
FAILING MODULE
subsys01

Figure 169. Mail Message Delivered to root Concerning the subsys01 Subsystem

The second example presented is for a subsystem, subsys02, that does not
include a notification program supplied by Scalable POWERparallel Systems,
RS/6000 Division. When this subsystem is installed, no notification method is
installed for it. If the system administrator wants some notification when the
subsystem terminates abnormally, an object can be defined for the subsystem in
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the SRCnotify object class. The notification method specified can use the dae_msg
program to generate a message. See Figure 170 on page 299.

# mknotify -n subsys02 -m ″ /usr/local/bin/subsys_fail″

# odmget -q ″notifyname = ′ subsys02′ ″  SRCnotify

SRCnotify:
notifyname = ″subsys02″
notifymethod = ″ /usr/local/bin/subsys_fail″

# cat /usr/local/bin/subsys_fail
#!/bin/ksh

/usr/lpp/ssp/bin/dae_msg -l ″$1″  |  /usr/bin/mail -s ″$1 failed!″ root

exit 0

Figure 170. Defining a Notification Method Not Using the dae_notify Program

11.3 Building and Shipping the SRC Notification Support Programs
This section describes how to build the SRC notification support programs. The
programs may be built from the supplied diskette. A description of how the
programs are built in an active development organization is also included.

11.3.1 Building the Diskette Code
Once you follow the instructions in Appendix C, “Loading the Diskette” on
page 395, you will have access to the source code for the SRC notification
support programs. To build these programs, follow the instructions in
dae/src/SRC_notify/README.

11.3.2 Building Within the AIX 4.1 Development Environment (ADE)
Most of this chapter assumes that the SRC notification support programs are
installed in the directory /usr/lpp/ssp/bin. The assumption is that these
programs will be shipped on RS/6000 SP machines as part of the ssp.basic
package some time in the future. This would be convenient for any subsystems
that solely run on RS/6000 SP machines. Subsystems that may run on other AIX
systems that wish to take advantage of the SRC notification support programs
should ship the programs themselves. This section discusses how that can be
done. This section assumes prior knowledge of the AIX 4.1 Development
Environment52 (ADE) and LPP packaging.

In the build trees of the AIX 4.1 Development Environment (ADE) in Scalable
POWERparallel Systems, RS/6000 Division, the source for the SRC notification
support programs is placed in the directory src/dae/SRC_notify. This directory
includes a make file that contains the rules for building the SRC notification

52 The AIX 4.1 Development Environment (ADE) is an internal environment for building and packaging AIX.
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support programs. An LPP wishing to build and ship the SRC notification
support programs should take the following steps:

• Create a directory in the build tree in which the SRC notification support
programs are to be built for the LPP. Do not plan on building anything other
than the SRC notification support programs in this directory.

• Create a make file in the directory created in the above step. This make file
should be very simple. It would usually contain an assignment to the
variable IDIR. The assigned value should be the directory in which the SRC
notification support programs are to be installed. The programs can be
installed in different directories, although that is not usual. Individual
directories can be specified by assigning values to the variables
dae_notify_IDIR, dae_finderr_IDIR, dae_msg_IDIR, dae_status_IDIR, and
dae_date_IDIR.

If you want to have the SRC notification support programs dependent on the
make file, include an assignment to the MAKEFILE_DEPENDENCY variable in the
make file. The value assigned to the variable should be the name of the make
file.

At the end of the make file, you should include the make file
${MAKETOP}/dae/SRC_notify/Makefile. That make file knows how to build the
SRC notification support programs. The make file created by the LPP should
not include the ${RULES_MK} file. That file is included by
${MAKETOP}/dae/SRC_notify/Makefile.

• Update the make file in the parent directory of the directory created above.
Change the make file such that the newly created directory is listed in the
value assigned to the SUBDIRS variable. This will cause make to visit the newly
created directory during a build.

• Add entries to the appropriate inslist file, also referred to as a [fileset].il
file, describing how the SRC notification support programs are to be
installed. Entries should be added for dae_notify, dae_finderr, dae_msg,
dae_status, and dae_date. The type specified should be F or f, depending on
where the programs are being installed. The uid specified should be 2, for
the bin user. The gid specified should be 2, for the bin group. The
recommended value for mode is 550.

Let′s consider an example. Assume an LPP known as somelpp wishes to ship the
SRC notification support programs in the directory /usr/lpp/somelpp/bin. A
directory is created in the build tree. The new directory is
src/somelpp/SRC_notify. Figure 171 shows the make file placed in
src/somelpp/SRC_notify. The make file in src/somelpp should be changed such that
SRC_notify is included in the list of directories assigned to the SUBDIRS variable.
The inslist file for the fileset in the somelpp LPP that will ship the SRC
notification support programs is modified to include entries for these programs.

IDIR = /usr/lpp/somelpp/bin/
MAKEFILE_DEPENDENCY = Makefile

.include <${MAKETOP}/dae/SRC_notify/Makefile>

Figure 171. Example of a make File for the SRC Notification Support Programs
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Figure 172 on page 301 shows what these new entries would look like. Notice
that the type of each file is F, since the programs are being installed under /usr.

F 2 2 550 /usr/lpp/somelpp/bin/dae_notify
F 2 2 550 /usr/lpp/somelpp/bin/dae_finderr
F 2 2 550 /usr/lpp/somelpp/bin/dae_msg
F 2 2 550 /usr/lpp/somelpp/bin/dae_status
F 2 2 550 /usr/lpp/somelpp/bin/dae_date

Figure 172. Example of inslist Entries for the SRC Notification Support Programs

11.4 Man Pages for the SRC Notification Support Programs
The following man pages are provided for the SRC notification support programs:

• B.1, “dae_notify(1)” on page 386

• B.2, “dae_msg(1)” on page 390

• B.3, “dae_status(1)” on page 392
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Chapter 12. New SRC Program Support

Section 5.6.10, “Processing Subsystem-Defined Requests” on page 125
discusses how a subsystem may respond to requests delivered through the SRC
that are not actually defined by the SRC. Section 10.2.5, “Running under the
SRC: Subsystem-Defined Requests” on page 271 describes how the daemon
support routines support this capability. When a new request is defined, a
program must be created to send the request to a subsystem. It turns out that a
model program can be provided that can be compiled to create a program that
sends a specific subsystem-defined request and has the look and feel of the
standard SRC commands.

12.1 The New SRC Program Model
The model program provided is in a file named dae_SRCmodel.c. It is based on
the single source file that is used to create the traceson, tracesoff, and refresh
SRC commands. This program can be customized as required when it is
compiled. How the program is customized is described as follows:

• When the model program is compiled, it will include a header file with the
name dae_newSRCreqs.h. You should create that header file. In the header
file you should define a preprocessor macro for the subsystem-defined
request to be supported by the command being created. The preprocessor
macro should define a symbolic name for the request number to be sent to a
subsystem. The request number must be a value from 256 to 32767,
inclusive. When the model program is compiled, the compiler must be
directed to search the directory holding dae_newSRCreqs.h for header files.

• When the model program is compiled, the DAE_CMD macro must be equated to
the macro in dae_newSRCreqs.h that defines the request to be sent to a
subsystem by the command being created. This can be done with an option
of the compiler.

• If the program to be created should support the -l flag, the DAE_LONG macro
should be defined to a non-zero value. This can be done with an option of
the compiler.

• If the program to be created should support the -a flag, the DAE_ARG macro
should be defined to DAE_ARG_NUMBER or DAE_ARG_STRING. The value indicates
whether the argument associated with the -a flag should be interpreted as a
number or as a string. This can be done with an option of the compiler.

A program generated from the model program will support the standard -h, -s,
-g, and -p flags of the standard SRC commands. The -h flag can be used to
specify a host; the -s flag can be used to specify a subsystem name; the -g flag
can be used to specify a group name; and the -p flag can be used to specify the
PID of the targeted subsystem. If the DAE_LONG macro is defined to a non-zero
value when the program is created, the program will also support the -l flag.
The -l flag can be used to specify the long version of a request. If the DAE_ARG
macro is defined when the program is created, the program will support the -a
flag. The -a flag can be used to supply an argument unique to the request being
made by the command.

When a program generated from the model program sends a request to a
subsystem, the value of the parm1 field of the subreq structure passed to the
subsystem depends on whether the generated program supports the -l flag and
whether the -l flag was specified when the program was invoked. If the
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generated program supports the -l flag, the parm1 field of the subreq structure
will indicate whether or not the -l flag was specified when the program was
invoked; parm1 will be 0 when the -l flag is not specified, and 1 when it is
specified. A program generated from the model program which does not
support the -l flag will always set parm1 of the subreq structure to 0.

When a program generated from the model program sends a request to a
subsystem, the value of the parm2 field of the subreq structure passed to the
subsystem depends on whether the generated program supports the -a flag,
whether it expects the -a argument to be a number, and whether the -a flag was
specified when the program was invoked. If the generated program supports the
-a flag and the generated program expects the -a argument to be a number, and
the -a flag was specified when the program was invoked, the -a argument will be
converted into a signed short integer and placed in the parm2 field of the subreq
structure. If the generated program does not support the -a flag, the generated
program expects the -a argument to be a string, or the -a flag is not specified
when the program is invoked, the parm2 field of the subreq structure will be set to
0.

When the generated program interprets the -a argument as a number, possible
values are limited to those that can be held in a signed short integer. On AIX,
this is a number ranging from -32768 to 32767. The generated program will
convert the -a argument to a signed short integer using the sscanf routine with
the format string “%hi.” This format string will interpret numbers starting with 0x
or 0X as hexadecimal numbers, other numbers starting with 0 as octal numbers,
and other numbers as decimal numbers. Error checking is not done, and
overflow is not detected. If error checking or overflow is important, the program
can be generated to expect a string for the -a argument, and the subsystem
which receives the string can do the error detection and conversion.

A program generated from the model program that supports the -a flag and
expects the -a argument to be a string sends the string to the target subsystem.
The length of the string is limited to 1,961 bytes. Strings longer than the limit are
silently truncated.

12.2 New SRC Program Examples
Section 10.2.5, “Running under the SRC: Subsystem-Defined Requests” on
page 271 provides an example of a subsystem supporting three
subsystem-defined requests; one request causes the subsystem to start
collecting some sort of statistics, another request causes the subsystem to stop
collecting those statistics, and the last request causes the subsystem to read a
specified configuration file when it is sent a refresh request. The request to start
collecting statistics involves a numeric parameter, an interval in seconds, and an
option to collect extended statistics. The request to stop collecting statistics
does not require any parameters. The request to read a specified configuration
file involves a string holding a path name as a parameter. The dae_SRCmodel.c
model program can be used to create programs that can be used by a system
administrator to send these requests.

Three programs will be created. The statson program will be used to tell a
subsystem to start collecting statistics, the statsoff program will be used to tell
a subsystem to stop collecting statistics, and the chconfig program will be used
to tell a subsystem to read a certain configuration file when doing a subsystem
refresh.
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A header file named dae_newSRCreqs.h must be created. It is shown in Figure 173
on page 305. It defines three preprocessor macros, COLLECTSTATS, NOSTATS, and
CONFIGPATH. These macros provide symbolic names for the new
subsystem-defined requests. The numeric values associated with these
symbolic names are identical to the request values that the example subsystem
in section 10.2.5, “Running under the SRC: Subsystem-Defined Requests” on
page 271 will handle. Once the header file is created, the programs can be
generated. The programs are created by compiling the dae_SRCmodel.c model
program. When the dae_SRCmodel.c program is compiled, it includes the
dae_newSRCreqs.h header file.

$ cat dae_newSRCreqs.h
#ifndef _DAE_NEWSRCREQS_H
#define _DAE_NEWSRCREQS_H

#define COLLECTSTATS 256
#define NOSTATS 257
#define CONFIGPATH 258

#endif

Figure 173. Sample dae_newSRCreqs.h Header File

When statson is compiled, the DAE_CMD macro should be equated to the
COLLECTSTATS macro. As a result, when the statson program sends a request to a
subsystem, the action field of the subreq structure will be set to 256, which
represents the request to start collecting statistics. The statson program should
be compiled with the DAE_LONG macro defined to have a non-zero value. As a
result, the statson program will support the -l flag. The program will use the
parm1 field of the subreq structure sent to the subsystem to indicate whether the
-l flag was specified when the program was invoked. The statson program
should also be compiled with the DAE_ARG macro defined to have the value
DAE_ARG_NUMBER. As a result, the statson program will support the -a flag. The
argument supplied with the -a flag will be converted to a signed short number
and placed in the parm2 field of the subreq structure sent to the subsystem.
Referring to Figure 156 on page 275, the receiving subsystem will treat this
argument as the number of seconds in a statistics gathering interval.

When statsoff is compiled, the DAE_CMD macro should be equated to the NOSTATS
macro. As a result, when the statsoff program sends a request to a subsystem,
the action field of the subreq structure will be set to 257, which represents the
request to stop collecting statistics. Neither the DAE_LONG nor the DAE_ARG macro
should be defined when the statsoff program is compiled. As a result, the
program will not support the -l flag nor the -a flag, and the parm1 and parm2
fields of the subreq structure sent to a subsystem by the program will always be
set to zeros.

When chconfig is compiled, the DAE_CMD macro should be equated to the
CONFIGPATH macro. As a result, when the chconfig program sends a request to a
subsystem, the action field of the subreq structure will be set to 258, which
represents the request to change the configuration file to be read when
refreshing the subsystem. The chconfig program should not be compiled with
the DAE_LONG macro defined. As a result, the chconfig program will not support
the -l flag. The program will always set the parm1 field of the subreq structure
sent to the subsystem to zero. The chconfig program should be compiled with
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the DAE_ARG macro defined to have the value DAE_ARG_STRING. As a result, the
chconfig program will support the -a flag. The argument supplied with the -a
flag will be sent to the subsystem as a null-terminated string. Referring to
Figure 156 on page 275, the receiving subsystem will receive this string through
the parm3 pointer in the other_requests routine, and the string will be treated as
the path name of the configuration file to read when the subsystem is refreshed.

The statson, statsoff, and chconfig programs will support the -h, -s, -g, and -p
flags.

Figure 174 shows some examples of the statson, statsoff, and chconfig
programs in use. First, the programs are targeted toward a subsystem,
des.ex.sock, that supports the COLLECTSTATS, NOSTATS, and CONFIGPATH requests
with the code shown in Figure 155 on page 273 and Figure 156 on page 275.
The statson command targeted to des.ex.sock causes that subsystem to start
collecting its statistics every 120 seconds. The statsoff command targeted to
des.ex.sock causes that subsystem to stop collecting statistics. The chconfig
command targeted to des.ex.sock causes that subsystem to read the
configuration file /tmp/alt.config.file when the subsystem refreshes itself. The
messages displayed by statson, statsoff, and chconfig when directed toward the
des.ex.sock subsystem were generated by the subsystem, when its
other_requests routine called dae_inform_printf or dae_inform_puts. When the
statson, statsoff, and chconfig commands are targeted to a subsystem that
does not support the COLLECTSTATS, NOSTATS, and CONFIGPATH requests, such as
inetd, an error message is displayed.

# statson -s des.ex.sock -a ″120″
Subsystem des.ex.sock will collect statistics every 120 seconds.

# statsoff -s des.ex.sock
Subsystem des.ex.sock will no longer collect statistics.

# chconfig -s des.ex.sock -a ″ /tmp/alt.config.file″
Configuration file path changed to /tmp/alt.config.file.

# statson -s inetd -a ″120″
0513-087 The /usr/sbin/inetd Subsystem has received a request that
it does not understand and could not service.
Contact System Administration.

# statsoff -s inetd
0513-087 The /usr/sbin/inetd Subsystem has received a request that
it does not understand and could not service.
Contact System Administration.

# chconfig -s inetd -a ″ /tmp/alt.config.file″
0513-087 The /usr/sbin/inetd Subsystem has received a request that
it does not understand and could not service.
Contact System Administration.

Figure 174. New SRC Programs in Use
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12.3 Building Programs Using the Model
This section describes the compilation and library reference used in building
programs, using the model described in section 12.1, “The New SRC Program
Model” on page 303.

12.3.1 Building Outside the AIX 4.1 Development Environment (ADE)
To build programs with the new SRC program model outside of ADE, create the
header file dae_newSRCreqs.h in the current directory as described in Section 12.1,
“The New SRC Program Model” on page 303, copy the dae_SRCmodel.c file to the
current directory, and execute the compiler.

• Use the compiler -D flag to define the DAE_CMD, DAE_LONG, and DAE_ARG macros
as appropriate.

• Use the compiler -I flag to direct the compiler to search for header files from
the current directory.

• Use the compiler -o flag to specify the name of the executable that is to be
created.

• Use the compiler -l flag to link the program with the libsrc.a and libodm.a
l ibraries.

• Specify dae_SRCmodel.c as the source file.

Figure 175 shows the three example programs discussed earlier being built
outside of the ADE environment.

$ cc -DDAE_CMD=COLLECTSTATS -DDAE_LONG -DDAE_ARG=DAE_ARG_NUMBER -I. \
-o statson dae_SRCmodel.c -lsrc -lodm

$ cc -DDAE_CMD=NOSTATS -I. \
-o statsoff dae_SRCmodel.c -lsrc -lodm

$ cc -DDAE_CMD=CONFIGPATH -DDAE_ARG=DAE_ARG_STRING -I. \
-o chconfig dae_SRCmodel.c -lsrc -lodm

Figure 175. Compiling Programs Based on dae_SRCmodel.c (without the ADE)

Once you follow the instructions in Appendix C, “Loading the Diskette” on
page 395, you will have access to the dae_SRCmodel.c file in the directory
dae/src/SRC_cmd_model.

12.3.2 Building Inside the AIX 4.1 Development Environment (ADE)
This section assumes prior knowledge of the AIX 4.1 Development Environment
(ADE), particularly the use of make files in that environment53.

To build some programs with the new SRC program model within the ADE of
Scalable POWERparallel Systems, RS/6000 Division, you must create a directory
in the source tree where those programs, and only those programs, are to be
built. Within the directory, create the header file dae_newSRCreqs.h as described
previously, and create a make file. This make file will be referred to in the
following sections as the program unique make file.

53 The AIX 4.1 Development Environment (ADE) is an internal environment for building and packaging AIX.
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The program unique make file will only include information unique to the
commands being built. Information common to building any program from
dae_SRCmodel.c is included in the make file src/dae/SRC_cmd_model/Makefile. This
make file will be referred to as the program model make file. Most make files in the
ADE must include the file identified by the variable RULES_MK. The program
unique make file should not include this file. Instead, the program unique make
file should include the program model make file. The program model make file
includes the file identified by the variable RULES_MK and contains rules for building
a program based on dae_SRCmodel.c.

Before including the program model make file, the program unique make file
should assign values to certain variables. The values assigned are used to
customize the creation of programs from the dae_SRCmodel.c source file. The
following variables should be assigned values in the program unique make file:

• PROGRAMS - Assign to this variable a list of the names of the programs to be
built. All these programs will be built from dae_SRCmodel.c.

If only one program is specified in this list, DAE_CMD, DAE_LONG, and DAE_ARG
can be defined without qualification.

If multiple programs are specified, specific values for DAE_CMD, DAE_LONG, and
DAE_ARG can be specified for each program by qualifying the variable names
with the name of the .o file associated with the program. For example, the
values for foo can be specified by defining foo.o_DAE_CMD, foo.o_DAE_LONG, and
foo.o_DAE_ARG.

• DAE_CMD - Assign to this variable the name of a symbolic constant
representing the command number. The symbolic constant should be
defined in the header file dae_newSRCreqs.h.

• DAE_LONG - If the built program is to support the -l flag, assign to this variable
a value other than 0. If the built program is not to support the -l flag, either
assign to DAE_LONG a value of 0, or do not define DAE_LONG.

• DAE_ARG - If the built program is to support the -a flag, assign to this variable
the value DAE_ARG_NUMBER or DAE_ARG_STRING, depending on whether the -a
argument should be sent to the target subsystem as a number or a string. If
the built program is not to support the -a flag, either assign to DAE_ARG a
value of DAE_ARG_NONE, or do not define DAE_ARG.

• IDIR - Specify the directory into which the built commands are to be
installed.

Figure 176 on page 309 shows an example of a program unique make file for the
programs discussed earlier in this chapter, statson, statsoff, and chconfig. The
PROGRAMS variable is assigned the names of the three programs to be built. The
IDIR variable is assigned the path name of the directory into which these
programs are to be installed. Note that the path name assigned to the IDIR
variable must end with a slash (/). For statson.o, the DAE_CMD variable is
assigned the value COLLECTSTATS, the DAE_LONG variable is assigned a non-zero
value, and the DAE_ARG variable is assigned DAE_ARG_NUMBER. Therefore, after the
statson program is built, it will support the COLLECTSTATS request, the -l flag, and
the -a flag with a numeric argument. The variable assignments specific to
statsoff.o will cause the statsoff program to support the NOSTATS request, and
to not support the -l or -a flags. The variable assignments specific to chconfig.o
will cause the chconfig program to support the CONFIGPATH request and the -a
flag with a string argument, but not the -l flag.
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$ cat Makefile

PROGRAMS = statson statsoff chconfig

IDIR = /usr/lpp/somelpp/bin/

statson.o_DAE_CMD = COLLECTSTATS
statson.o_DAE_LONG = 1
statson.o_DAE_ARG = DAE_ARG_NUMBER

statsoff.o_DAE_CMD = NOSTATS

chconfig.o_DAE_CMD = CONFIGPATH
chconfig.o_DAE_ARG = DAE_ARG_STRING

MAKEFILE_DEPENDENCY = Makefile

.include <${MAKETOP}/dae/SRC_cmd_model/Makefile>

Figure 176. A make File to Bui ld Programs Based on dae_SRCmodel.c (With ADE)

Figure 177 on page 310 shows the results of building the statson, statsoff, and
chconfig programs in the ADE. The results of the builds shown in the example
depend on the make file in Figure 176 and the header file in Figure 173 on
page 305 being in the same directory in which the build commands are run.
Notice the following:

• As each command is built, a symbolic link is created to dae_SRCmodel.c. This
is because the suffix rules in the ADE environment expect to be able to build
a file statson.o from a source file named statson.c, not dae_SRCmodel.c.

• When the commands are built, DAE_CMD, DAE_LONG, and DAE_ARG are defined to
have values consistent with the value assignments in the program unique
make file.

• The compiler flag -I. allows the compiler to find the dae_newSRCreqs.h header
file in the current directory.

• When the commands are linked, they are linked with the libsrc.a and
libodm.a libraries. These libraries are specified in the program model make
file.

• When the install phase is run, the commands are installed in the directory
specified in the program unique make file by the value of the IDIR variable.
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$ build statson
relative path: ./example/new_cmds.
mkdir ../../../obj/power/example/new_cmds
cd ../../../obj/power/example/new_cmds
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/rm -f statson.c
/bin/ln -s ../../../../src/reldaemons/SRC_cmd_model/dae_SRCmodel.c statson.c
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/echo ″**** Using versi
on cset 3.0.0.0 of cc to build statson.o ****\n″ >&2 ; LANG=En_US LIBPATH=/proj
ect/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib:/project/sprel2.4/b
uild/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib NLSPATH=/project/sprel2.4/build/r
2_4t6d6/ode_tools/power/usr/lib/nls/msg/%L/%N:/afs/aix.kingston.ibm.com/rs_aix3
2/prod/apps/cmvc/2.2.0.1/usr/lpp/cmvc/msg/%L/%N:/usr/lib/nls/msg/%L/%N:/usr/lib
/nls/msg/prime/%N /project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/cc -
F/project/sprel2.4/build/r2_4t6d6/ode_tools/power/etc/xlC.cfg -qhalt=E -c -D_
IBMR2 -D_POWER -D_AIX -DNLS -D_NLS -DMSG -D__STR31__ -Daiws -D_POWER_RS -D_POWE
R_PC -D_POWER_RS1 -D_POWER_RS2 -D_POWER_RSC -D_POWER_601 -D_POWER_603 -D_POWER_
604 -D_THREADS -DSPAIX411 -DSPAIX41 -M -O -DDAE_CMD=COLLECTSTATS -DDAE_LONG=1
-DDAE_ARG=DAE_ARG_NUMBER -I. -I/u/agar/sb_dae4/src/example/new_cmds -I/pr

oject/sprel2.4/build/r2_4t6d6/src/example/new_cmds -I../../reldaemons/SRC_cmd_m
odel -I/u/agar/sb_dae4/src/reldaemons/SRC_cmd_model -I/project/sprel2.4/build/r
2_4t6d6/src/reldaemons/SRC_cmd_model -I/u/agar/sb_dae4/export/power/usr/include
 -I/project/sprel2.4/build/r2_4t6d6/export/power/usr/include -I/u/agar/sb_dae4/
ode_tools/power/usr/lpp/xlc/usr/include -I/project/sprel2.4/build/r2_4t6d6/ode_
tools/power/usr/lpp/xlc/usr/include statson.c || ( rc=$?; /project/sprel2.4/bui
ld/r2_4t6d6/ode_tools/power/usr/bin/rm -f statson.u ; exit $rc )
**** Using version cset 3.0.0.0 of cc to build statson.o ****

/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/echo ″**** Using versi
on cset 3.0.0.0 of cc to build statson ****\n″ >&2 ; LANG=En_US LIBPATH=/projec
t/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib:/project/sprel2.4/bui
ld/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib NLSPATH=/project/sprel2.4/build/r2_
4t6d6/ode_tools/power/usr/lib/nls/msg/%L/%N:/afs/aix.kingston.ibm.com/rs_aix32/
prod/apps/cmvc/2.2.0.1/usr/lpp/cmvc/msg/%L/%N:/usr/lib/nls/msg/%L/%N:/usr/lib/n
ls/msg/prime/%N /project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/cc -F/
project/sprel2.4/build/r2_4t6d6/ode_tools/power/etc/xlC.cfg -qhalt=E -o statso
n.X -s -L/u/agar/sb_dae4/export/power/usr/lib -L/u/agar/sb_dae4/export/
power/usr/ccs/lib -L/project/sprel2.4/build/r2_4t6d6/export/power/usr/lib -L/pr
oject/sprel2.4/build/r2_4t6d6/export/power/usr/ccs/lib -L/u/agar/sb_dae4/ode_t
ools/power/usr/lpp/xlc/usr/lib -L/u/agar/sb_dae4/ode_tools/power/usr/lpp/xlc/us
r/ccs/lib -L/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlc/usr/li
b -L/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlc/usr/ccs/lib -
L. statson.o -m -lsrc -lodm >libdepend.mk.out
**** Using version cset 3.0.0.0 of cc to build statson ****

/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/mv statson.X statson
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/md -rm -all .

Figure 177 (Part 1 of 4). Compiling Programs Based on dae_SRCmodel.c (With the ADE)
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$ build statsoff
relative path: ./example/new_cmds.
cd ../../../obj/power/example/new_cmds
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/rm -f statsoff.c
/bin/ln -s ../../../../src/reldaemons/SRC_cmd_model/dae_SRCmodel.c statsoff.c
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/echo ″**** Using versi
on cset 3.0.0.0 of cc to build statsoff.o ****\n″ >&2 ; LANG=En_US LIBPATH=/pro
ject/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib:/project/sprel2.4/
build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib NLSPATH=/project/sprel2.4/build/
r2_4t6d6/ode_tools/power/usr/lib/nls/msg/%L/%N:/afs/aix.kingston.ibm.com/rs_aix
32/prod/apps/cmvc/2.2.0.1/usr/lpp/cmvc/msg/%L/%N:/usr/lib/nls/msg/%L/%N:/usr/li
b/nls/msg/prime/%N /project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/cc
-F/project/sprel2.4/build/r2_4t6d6/ode_tools/power/etc/xlC.cfg -qhalt=E -c -D
_IBMR2 -D_POWER -D_AIX -DNLS -D_NLS -DMSG -D__STR31__ -Daiws -D_POWER_RS -D_POW
ER_PC -D_POWER_RS1 -D_POWER_RS2 -D_POWER_RSC -D_POWER_601 -D_POWER_603 -D_POWER
_604 -D_THREADS -DSPAIX411 -DSPAIX41 -M -O -DDAE_CMD=NOSTATS -DDAE_LONG=0 -D
DAE_ARG=DAE_ARG_NONE -I. -I/u/agar/sb_dae4/src/example/new_cmds -I/project/
sprel2.4/build/r2_4t6d6/src/example/new_cmds -I../../reldaemons/SRC_cmd_model -
I/u/agar/sb_dae4/src/reldaemons/SRC_cmd_model -I/project/sprel2.4/build/r2_4t6d
6/src/reldaemons/SRC_cmd_model -I/u/agar/sb_dae4/export/power/usr/include -I/pr
oject/sprel2.4/build/r2_4t6d6/export/power/usr/include -I/u/agar/sb_dae4/ode_to
ols/power/usr/lpp/xlc/usr/include -I/project/sprel2.4/build/r2_4t6d6/ode_tools/
power/usr/lpp/xlc/usr/include statsoff.c || ( rc=$?; /project/sprel2.4/build/r2
_4t6d6/ode_tools/power/usr/bin/rm -f statsoff.u ; exit $rc )
**** Using version cset 3.0.0.0 of cc to build statsoff.o ****

/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/echo ″**** Using versi
on cset 3.0.0.0 of cc to build statsoff ****\n″ >&2 ; LANG=En_US LIBPATH=/proje
ct/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib:/project/sprel2.4/bu
ild/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib NLSPATH=/project/sprel2.4/build/r2
_4t6d6/ode_tools/power/usr/lib/nls/msg/%L/%N:/afs/aix.kingston.ibm.com/rs_aix32
/prod/apps/cmvc/2.2.0.1/usr/lpp/cmvc/msg/%L/%N:/usr/lib/nls/msg/%L/%N:/usr/lib/
nls/msg/prime/%N /project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/cc -F
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/etc/xlC.cfg -qhalt=E -o stats
off.X -s -L/u/agar/sb_dae4/export/power/usr/lib -L/u/agar/sb_dae4/expor
t/power/usr/ccs/lib -L/project/sprel2.4/build/r2_4t6d6/export/power/usr/lib -L/
project/sprel2.4/build/r2_4t6d6/export/power/usr/ccs/lib -L/u/agar/sb_dae4/ode
_tools/power/usr/lpp/xlc/usr/lib -L/u/agar/sb_dae4/ode_tools/power/usr/lpp/xlc/
usr/ccs/lib -L/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlc/usr/
lib -L/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlc/usr/ccs/lib
 -L. statsoff.o -m -lsrc -lodm >libdepend.mk.out
**** Using version cset 3.0.0.0 of cc to build statsoff ****

/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/mv statsoff.X statsoff
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/md -rm -all .

Figure 177 (Part 2 of 4). Compiling Programs Based on dae_SRCmodel.c (With the ADE)
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$ build chconfig
relative path: ./example/new_cmds.
cd ../../../obj/power/example/new_cmds
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/rm -f chconfig.c
/bin/ln -s ../../../../src/reldaemons/SRC_cmd_model/dae_SRCmodel.c chconfig.c
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/echo ″**** Using versi
on cset 3.0.0.0 of cc to build chconfig.o ****\n″ >&2 ; LANG=En_US LIBPATH=/pro
ject/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib:/project/sprel2.4/
build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib NLSPATH=/project/sprel2.4/build/
r2_4t6d6/ode_tools/power/usr/lib/nls/msg/%L/%N:/afs/aix.kingston.ibm.com/rs_aix
32/prod/apps/cmvc/2.2.0.1/usr/lpp/cmvc/msg/%L/%N:/usr/lib/nls/msg/%L/%N:/usr/li
b/nls/msg/prime/%N /project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/cc
-F/project/sprel2.4/build/r2_4t6d6/ode_tools/power/etc/xlC.cfg -qhalt=E -c -D
_IBMR2 -D_POWER -D_AIX -DNLS -D_NLS -DMSG -D__STR31__ -Daiws -D_POWER_RS -D_POW
ER_PC -D_POWER_RS1 -D_POWER_RS2 -D_POWER_RSC -D_POWER_601 -D_POWER_603 -D_POWER
_604 -D_THREADS -DSPAIX411 -DSPAIX41 -M -O -DDAE_CMD=CONFIGPATH -DDAE_LONG=0
 -DDAE_ARG=DAE_ARG_STRING -I. -I/u/agar/sb_dae4/src/example/new_cmds -I/pro
ject/sprel2.4/build/r2_4t6d6/src/example/new_cmds -I../../reldaemons/SRC_cmd_mo
del -I/u/agar/sb_dae4/src/reldaemons/SRC_cmd_model -I/project/sprel2.4/build/r2
_4t6d6/src/reldaemons/SRC_cmd_model -I/u/agar/sb_dae4/export/power/usr/include
-I/project/sprel2.4/build/r2_4t6d6/export/power/usr/include -I/u/agar/sb_dae4/o
de_tools/power/usr/lpp/xlc/usr/include -I/project/sprel2.4/build/r2_4t6d6/ode_t
ools/power/usr/lpp/xlc/usr/include chconfig.c || ( rc=$?; /project/sprel2.4/bui
ld/r2_4t6d6/ode_tools/power/usr/bin/rm -f chconfig.u ; exit $rc )
**** Using version cset 3.0.0.0 of cc to build chconfig.o ****

/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/echo ″**** Using versi
on cset 3.0.0.0 of cc to build chconfig ****\n″ >&2 ; LANG=En_US LIBPATH=/proje
ct/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib:/project/sprel2.4/bu
ild/r2_4t6d6/ode_tools/power/usr/lpp/xlC/lib NLSPATH=/project/sprel2.4/build/r2
_4t6d6/ode_tools/power/usr/lib/nls/msg/%L/%N:/afs/aix.kingston.ibm.com/rs_aix32
/prod/apps/cmvc/2.2.0.1/usr/lpp/cmvc/msg/%L/%N:/usr/lib/nls/msg/%L/%N:/usr/lib/
nls/msg/prime/%N /project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/cc -F
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/etc/xlC.cfg -qhalt=E -o chcon
fig.X -s -L/u/agar/sb_dae4/export/power/usr/lib -L/u/agar/sb_dae4/expor
t/power/usr/ccs/lib -L/project/sprel2.4/build/r2_4t6d6/export/power/usr/lib -L/
project/sprel2.4/build/r2_4t6d6/export/power/usr/ccs/lib -L/u/agar/sb_dae4/ode
_tools/power/usr/lpp/xlc/usr/lib -L/u/agar/sb_dae4/ode_tools/power/usr/lpp/xlc/
usr/ccs/lib -L/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlc/usr/
lib -L/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/lpp/xlc/usr/ccs/lib
 -L. chconfig.o -m -lsrc -lodm >libdepend.mk.out
**** Using version cset 3.0.0.0 of cc to build chconfig ****

/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/mv chconfig.X chconfig
/project/sprel2.4/build/r2_4t6d6/ode_tools/power/usr/bin/md -rm -all .

Figure 177 (Part 3 of 4). Compiling Programs Based on dae_SRCmodel.c (With the ADE)
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$ build install_all
relative path: ./example/new_cmds.
cd ../../../obj/power/example/new_cmds
Creating optlevel ...
Shipping link /usr/lpp/somelpp/bin/statson ...
Shipping link /usr/lpp/somelpp/bin/statsoff ...
Shipping link /usr/lpp/somelpp/bin/chconfig ...
Shipping link /usr/lpp/optlevel/optlevel ...

Figure 177 (Part 4 of 4). Compiling Programs Based on dae_SRCmodel.c (With the ADE)

A final note should be made about building in the ADE. As mentioned above, a
new directory should be created in which only programs based on
dae_SRCmodel.c are built. The make file in the parent directory of this new
directory should be changed so the new directory is visited during a build. The
change required to the parent directory′s make file is to list the name of the new
directory in the list of directory names assigned to the SUBDIRS make file variable.

12.4 Packaging Programs Built from the Model
This section assumes prior knowledge of LPP packaging.

As with any program to be packaged and shipped, a program built with the new
SRC program model must have an entry in an inslist file, also referred to as a
[fileset].il file, describing how the program is to be installed. The
recommended values for the fields in the inslist entry depend on what the
program does.

If the program affects how a subsystem runs, or it provides information that
would not be appropriate to divulge to any user, the following recommendations
are made. The type field value should be F or f, depending on where the
program is being installed. The uid field value should be 0, signifying the root
user. The gid field value should be 0, signifying the system group. The
recommended value for the mode field is 550. These values would only allow the
root user or a user in the system group to successfully run the command.

If the program does not affect the behavior of the subsystem and supplies
information appropriate to divulge to any user, the following recommendations
are made: The type field value should be FT or ft depending on where the
program is being installed. The uid field value should be 0, signifying the root
user. The gid field value should be 0, signifying the system group. The
recommended value for the mode field is 2555. These values would make the
program a set-group-ID program to the system group, and would allow any user
to run the program. A program that sends requests to the SRC and that is to be
executable by any user must be a set-group-ID program, because a program
must be running with an effective user ID of 0 or an effective group ID of 0 to be
able to send requests to the SRC daemon.
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12.5 Keeping SRC Request Numbers Unique
Care must be taken when a subsystem defines SRC requests. If two subsystems
use the same number to represent different requests, confusion could result.
For example, assume a subsystem defines two requests, “check for quorum”
and “do not check for quorum.” Two new programs would probably be created
to send these requests, quorumon and quorumoff. If the request numbers used for
“check for quorum” and “do not check for quorum” were the same numbers that
the des.ex.sock subsystem used for COLLECTSTATS and NOSTATS, the statson and
statsoff programs could be used to turn quorum checking on and off in the
subsystem that defined the quorum requests, and the quorumon and quorumoff
programs could be used to turn statistics collection on and off in des.ex.sock.
This would not be desirable. The desired behavior would be that des.ex.sock
returns an error when quorumon and quorumoff are applied to it, and the other
subsystem returns an error when statson and statsoff are applied to it.

The SRC provides no help in managing request numbers for subsystem-defined
requests. To avoid collisions in any SRC requests defined by subsystems
shipped by Scalable POWERparallel Systems, RS/6000 Division, a list of request
number assignments will be maintained. Request numbers can be assigned to
particular subsystems, a whole LPP, or some unit between the two. Once a
range of numbers is assigned to some unit, it should be managed with macros in
a dae_newSRCreqs.h file.
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Appendix A. Daemon Support Routines man Pages

This appendix provides detailed program instructions for the use of the Daemon
Support Routines. The level of detail is consistent with that commonly provided
in UNIX systems man pages. The appendix provides reference for the user of the
routines; this would usually be a daemon writer interested in using the routines
to accomplish the functions explained in this redbook.
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A.1 dae_init(3)

NAME

dae_init - Initializes a daemon.

SYNOPSIS

#include <dae.h>

int dae_init(
dae_parent_t *dae_parent,
dae_error_detail_t *dae_err_detail

);

The dae.h file includes these definitions:

#define DAE_P_SRC 0x0001
#define DAE_P_INETD 0x0002
#define DAE_P_OTHER 0x0004

typedef int dae_parent_t;

struct dae_error_detail {
char dae_routine[20];
char dae_error_string[80];
char dae_filename[20];
char dae_fileversion[10];
long dae_fileline;

};

typedef struct dae_error_detail dae_error_detail_t;

PARAMETERS

dae_parent This is an input/output parameter. On input, it specifies how the daemon
may be started. The dae_init routine determines how the daemon was
started, and determines if that method is allowed by the value of this
parameter. On input, this parameter is formed by using one or more of
these constants as operands in an OR operation:

• DAE_P_SRC: The daemon is allowed to be started by the SRC.
• DAE_P_INETD: The daemon is allowed to be started by inetd.
• DAE_P_OTHER: The daemon is allowed to be started in some other

manner; for example by init or a shell.

The dae_init routine changes this parameter to be only one of these
values. The value indicates how the daemon was actually started.

This pointer must not have the NULL value.
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dae_err_detail If this pointer is not NULL, and dae_init returns an error indication, the area
pointed to is updated to provide detailed data about the error. The data
provided is suitable for logging, but the dae_init routine does not log
errors. Logging is the responsibility of the calling routine. The area
pointed to may be updated even if dae_init indicates success. In this case,
the information should be ignored.

If this pointer is NULL, detailed data about errors cannot be returned.

DESCRIPTION

The dae_init routine initializes a daemon. The steps taken by dae_init to
initialize the daemon are determined by the routine′s parameters, how the
daemon was started, and whether certain routines were called before dae_init.
The routines that can affect the steps taken by dae_init all have names with the
prefix “dae_init_.” The man page for each of these routines describes how the
routine affects the steps taken by dae_init.

The initialization steps taken by dae_init are:

• Determine how the daemon was started.

First, dae_init determines if the daemon was started by the Internet
Superserver (inetd). If file descriptors 0, 1, and 2 are associated with the
same internet domain socket, dae_init considers the daemon to have been
started by inetd.

If the daemon was started by inetd, but the dae_parent parameter does not
allow this, dae_init returns an error indication.

If the daemon was not started by inetd, dae_init determines if the daemon
was started by the System Resource Controller (SRC). If the current parent
process of the daemon is srcmstr, dae_init considers the daemon to have
been started by the SRC. If the daemon was started by the SRC, but the
dae_parent parameter does not allow this, dae_init returns an error
indication.

If the daemon was not started by inetd nor the SRC, but the dae_parent
parameter does not allow this, dae_init returns an error indication.

The dae_parent parameter is updated to indicate how the daemon was
started.

• Ignore terminal-generated signals.

The following terminal-generated signals are ignored: SIGHUP, SIGINT,
SIGQUIT, SIGTSTP, SIGTTIN, and SIGTTOU.

• Migrate the daemon to another process, if appropriate.

If the daemon was not started by inetd, nor by the SRC, and its current
parent process is not init, the daemon is migrated to another process. That
is, dae_init calls fork, the parent process terminates, and the child process
continues as the daemon. This is necessary to allow a shell to continue
processing input after it starts a daemon in the foreground.

• Change the paging space allocation policy under which the daemon process
runs.

The paging space allocation policy of the daemon process might be changed
if the dae_init_psalloc routine has been called. See A.8,
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“dae_init_psalloc(3)” on page 342, the dae_init_psalloc man page, for
details on how the paging space allocation policy is changed.

• Disassociate the daemon from its controlling terminal.

The dae_init routine will take the steps necessary to make the daemon
process a session leader without a controlling terminal.

• Deal with non-terminal generated signals.

The dae_init routine will ignore the SIGPIPE signal. This will protect the
daemon process from termination in the event that a pipe or socket, written
to by the daemon, does not have a reader.

If dae_init_prevent_zombies has been called before dae_init, the dae_init
routine may prevent the daemon from generating a buildup of zombie
processes. On many systems, including AIX, this simply means dae_init will
ignore the SIGCHLD signal. Many systems will not generate zombie processes
from terminated child processes if the parent process is ignoring the SIGCHLD
signal. On a system without those semantics, the dae_init routine will install
a signal handler for SIGCHLD that will clean up generated zombie processes.

The dae_init routine will set the disposition of the SIGTERM signal. The
disposition set depends on whether dae_init_term_sig, dae_init_SRC_sig,
dae_init_SRC_msq, or dae_init_SRC_sock have been called. If none of those
routines have been called, the disposition of SIGTERM is set to the default,
which is to terminate the process on delivery of the signal. If one of the
routines was called, but the address of a signal handler for SIGTERM was not
provided, the disposition of SIGTERM is set to the default. If one of the
routines was called, and the address of a signal handler for SIGTERM was
provided, the specified signal handler is installed for the SIGTERM signal.

If the dae_init_lowps routine has been called, dae_init may install a signal
handler for the SIGDANGER signal. This will protect the daemon process from
termination when the system is low on paging space. See A.7,
“dae_init_lowps(3)” on page 340 for details.

• Close unnecessary file descriptors.

If the daemon was started by the SRC or by inetd, all file descriptors beyond
file descriptor 2 are closed. Otherwise, all file descriptors are closed.

• Ensure the standard file descriptors are open.

Any of the standard file descriptors (0, 1, or 2) that are not associated with
an open file, are opened on /dev/null.

• Change the current working directory.

The current working directory of the daemon process is changed to root, /.

• Set the process file mode creation mask to 0.

• Perform SRC-unique initialization, if appropriate.

If the daemon was started by the SRC, some SRC-unique initialization is
performed. The initialization performed depends on whether any of the
following routines have been called: dae_init_SRC_sig, dae_init_SRC_msq, and
dae_init_SRC_sock.

If the dae_init_SRC_sig routine has been called, the disposition of the signals
specified to handle the SRC subsystem stop normal requests and subsystem
stop forced requests are set as specified by the parameters of
dae_init_SRC_sig. See A.2, “dae_init_SRC_sig(3)” on page 321 for details.
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If the dae_init_SRC_msq routine has been called, dae_init accesses the
message queue specified by the parameters of dae_init_SRC_msq. If the
message queue cannot be accessed, dae_init returns an error indication. If
the message queue can be accessed, the integer pointed to by the
dae_init_SRC_msq parameter dae_msqid is set to the message queue identifier
of the aforementioned message queue. See A.3, “dae_init_SRC_msq(3)” on
page 325 for more details.

If the dae_init_SRC_sock routine has been called, dae_init expects file
descriptor 0 to be associated with a UNIX domain socket through which
srcmstr will send requests to the daemon. If file descriptor 0 is not
associated with a UNIX domain socket, dae_init returns an error indication.
If file descriptor 0 is associated with a UNIX domain socket, file descriptor 0
is duplicated to another descriptor, and file descriptor 0 is opened against
/dev/null. The file descriptor to which the UNIX domain socket is duplicated
may have been specified on the call to dae_init_SRC_sock. The integer
pointed to by the dae_init_SRC_sock parameter dae_SRC_sockd is set to the file
descriptor associated with the socket. See A.4, “dae_init_SRC_sock(3)” on
page 328 for more details.

• Ensure the daemon is not already running, if appropriate.

If the dae_init_exclusive routine has been called, dae_init may use the
values specified on the dae_init_exclusive call to ensure that the daemon is
not already running. If it is already running, dae_init returns with an error
indication. See A.9, “dae_init_exclusive(3)” on page 346 for more details.

EXAMPLES

See 10.2, “Examples of Using the Daemon Support Routines” on page 247.

RETURN VALUES

DAE_E_OK Process successfully initialized as a daemon.

DAE_E_NOTAGAIN The dae_init routine cannot be called more than once.

DAE_E_PINVALID The value of the dae_parent parameter is invalid.

DAE_E_PWRONG Could not verify daemon′s parent is one of those allowed by the dae_parent
parameter.

DAE_E_PERROR Error trying to validate parent.

DAE_E_CHILD Could not create child process that would become daemon process.

DAE_E_SESSION Could not make daemon process a session leader.

DAE_E_SIGNAL Could not change the disposition of a signal.

DAE_E_CLOSE Could not determine how many file descriptors to close.

DAE_E_DEVNULL Could not open /dev/null on a standard file descriptor.

DAE_E_CHDIR Could not change working directory.

DAE_E_SRCPREP Failure attempting to prepare for SRC communications.

DAE_E_NOPSALLOC The system does not support changing paging space allocation.

DAE_E_AINVALID Invalid paging space allocation policy specified.

DAE_E_SETPSALLOC Failure attempting to set the desired paging space allocation policy.

DAE_E_EXCLINVALID Invalid parameters were passed to dae_init_exclusive.
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DAE_E_EXCLERROR Unexpected error enforcing exclusivity requirements of the daemon.

DAE_E_EXCLBUSY Allowing the process to run as a daemon would violate the exclusivity
requirements of the daemon program.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

If this routine is called by a program linked with the libdae.a library, it will not
check to determine if the program had been started by inetd. Furthermore, if the
program had called dae_init_SRC_sock, the dae_init routine will fail and return
DAE_E_SRCPREP.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.2, “dae_init_SRC_sig(3)” on page 321
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328
A.5, “dae_init_term_sig(3)” on page 336
A.6, “dae_init_prevent_zombies(3)” on page 338
A.7, “dae_init_lowps(3)” on page 340
A.8, “dae_init_psalloc(3)” on page 342
A.9, “dae_init_exclusive(3)” on page 346
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A.2 dae_init_SRC_sig(3)

NAME

dae_init_SRC_sig - Causes dae_init to initialize the daemon under the
assumption that SRC will make requests of the daemon using signals.

SYNOPSIS

#include <dae.h>

void dae_init_SRC_sig(
int dae_sig_stop_normal,
int dae_sig_stop_forced,
const dae_req_sig_t *dae_SRC_rtns,
int dae_restart

);

The dae.h file includes these definitions:

struct dae_req_sig {
void (*dae_stop_normal)(int dae_signo);
void (*dae_stop_forced)(int dae_signo);
void (*dae_stop_cancel)(int dae_signo);

};

typedef struct dae_req_sig dae_req_sig_t;

PARAMETERS

dae_sig_stop_normal Specifies the signal that this daemon expects to receive when the SRC
makes the subsystem stop normal request.

If the value of this parameter is 0, the dae_init routine takes no action to
support the SRC subsystem stop normal request. In this case, the
dae_SRC_rtns->dae_stop_normal parameter value is expected to be NULL.

If the value of this parameter is SIGTERM, the SRC subsystem stop normal
request will be handled in the same manner as the subsystem stop cancel
request. In this case, the dae_SRC_rtns->dae_stop_normal parameter is
expected to have the same value as the dae_SRC_rtns->dae_stop_cancel
parameter.

If the value of this parameter is not 0 nor SIGTERM, the action taken depends
on the value of the dae_SRC_rtns->dae_stop_normal parameter. If
dae_SRC_rtns->dae_stop_normal is not NULL, the routine to which it points is
installed as the signal handler for the signal specified by
dae_sig_stop_normal. If dae_SRC_rtns->dae_stop_normal is NULL, a signal
handler that only calls _exit(0) is installed for the signal specified by
dae_sig_stop_normal.
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dae_sig_stop_forced Specifies the signal that this daemon expects to receive when the SRC
makes the subsystem stop forced request.

If the value of this parameter is 0, the dae_init routine takes no action to
support the SRC subsystem stop forced request. In this case, the
dae_SRC_rtns->dae_stop_forced parameter value is expected to be NULL.

If the value of this parameter is SIGTERM, the SRC subsystem stop forced
request will be handled in the same manner as the subsystem stop cancel
request. In this case, the dae_SRC_rtns->dae_stop_forced parameter is
expected to have the same value as the dae_SRC_rtns->dae_stop_cancel
parameter.

If the value of this parameter is not 0 nor SIGTERM, the action taken depends
on the value of the dae_SRC_rtns->dae_stop_forced parameter. If
dae_SRC_rtns->dae_stop_forced is not NULL, the routine to which it points is
installed as the signal handler for the signal specified by
dae_sig_stop_forced. If dae_SRC_rtns->dae_stop_forced is NULL, a signal
handler that only calls _exit(0) is installed for the signal specified by
dae_sig_stop_forced.

dae_SRC_rtns: Specifies the address of a dae_req_sig structure. The structure contains the
members dae_stop_normal, dae_stop_forced, and dae_stop_cancel. The
meanings of these members are described in the following paragraphs.
Specifying a value of NULL for dae_SRC_rtns is semantically equivalent to
specifying a pointer to a structure whose members are all NULL.

dae_stop_normal Specifies the address of a routine that is to be installed as the signal
handler for the signal specified in the dae_sig_stop_normal parameter. The
daemon will receive the dae_sig_stop_normal signal when the SRC makes
the subsystem stop normal request of the daemon. When called, the
routine may terminate the daemon, but that is not required. The routine is
just required to put the daemon in normal stop mode; it may return without
terminating the daemon. When in normal stop mode, the daemon should
not accept new requests for work. It should complete all current requests,
release resources when current requests are completed, and then
terminate itself. The subsystem stop normal request usually originates
from the stopsrc command.

Like all signal handlers, the routine specified for dae_stop_normal should
accept one parameter, an integer identifying the signal that has been
caught. The routine should return nothing.

dae_stop_forced Specifies the address of a routine that is to be installed as the signal
handler for the signal specified in the dae_sig_stop_forced parameter. The
daemon will receive the dae_sig_stop_forced signal when the SRC makes
the subsystem stop forced request of the daemon. When called, the
routine may terminate the daemon, but that is not required. The routine is
just required to put the daemon in forced stop mode; it may return without
terminating the daemon. When in forced stop mode, the daemon should
terminate quickly, without completing current requests. It should release
resources and terminate itself as quickly as possible. The subsystem stop
forced request usually originates from the stopsrc -f command.

Like all signal handlers, the routine specified for dae_stop_forced should
accept one parameter, an integer identifying the signal that has been
caught. The routine should return nothing.
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dae_stop_cancel Specifies the address of a routine that is to be installed as the signal
handler for the SIGTERM signal. The daemon will receive the SIGTERM signal
when the SRC makes the subsystem stop cancel request of the daemon.
When called, the routine may terminate the daemon, but that is not
required. When called, the routine is just required to put the daemon in
cancel stop mode; it may return without terminating the daemon. When in
cancel stop mode, the daemon should terminate quickly, without
completing current requests. It should release resources and terminate
itself as quickly as possible. The subsystem stop cancel request usually
originates from the stopsrc -c command.

If a daemon in cancel stop mode has not terminated after a subsystem
dependent number of seconds, the SRC terminates the daemon by sending
it the SIGKILL signal.

Like all signal handlers, the routine specified for dae_stop_cancel should
accept one parameter, an integer identifying the signal that has been
caught. The routine should return nothing.

If a value of NULL is specified for dae_stop_cancel, the disposition of the
SIGTERM signal is set to the default. This will cause the daemon to
terminate immediately when it receives the SIGTERM signal.

dae_restart Specifies if the signal handlers installed will cause interrupted system calls
to be automatically restarted. If the value of this parameter is 0, and a
system call is interrupted by the execution of a stop normal, stop forced, or
stop cancel signal handler, the interrupted system call will not be restarted.
If the value of this parameter is not 0, restartable system calls interrupted
by the execution of a stop normal, stop forced, or stop cancel signal
handler will be restarted.

DESCRIPTION

A daemon calls the dae_init_SRC_sig routine when it is defined to the SRC as
accepting requests through signals. Through this routine′s parameters, the
calling daemon informs the daemon support routines which signals the SRC will
send to the daemon to make the subsystem stop normal and subsystem stop
forced requests, and which routines will handle the subsystem stop normal,
subsystem stop forced, and subsystem stop cancel requests. The subsystem
stop cancel request is always made through the SIGTERM signal.

The actions specified by the call to dae_init_SRC_sig are taken when the daemon
calls the dae_init routine. The signal handlers specified for the subsystem stop
normal and subsystem stop forced requests are only installed if dae_init
determines that the daemon has been started by the SRC. The disposition
specified for the SIGTERM signal is implemented whether or not the daemon has
been started by the SRC.

The signal handler for the dae_sig_stop_normal signal will be installed in such a
manner that the dae_sig_stop_normal and dae_sig_stop_forced signals are blocked
when the signal handler is executing.

The signal handler for the dae_sig_stop_forced signal will be installed in such a
manner that the dae_sig_stop_normal and dae_sig_stop_forced signals are blocked
when the signal handler is executing.
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The signal handler for the SIGTERM signal will be installed such that the
dae_sig_stop_normal, dae_sig_stop_forced, and SIGTERM signals are blocked when
the signal handler is executing.

NOTES

If, after calling dae_init_SRC_sig and dae_init, the daemon process changes the
disposition of the dae_sig_stop_normal, dae_sig_stop_forced, or SIGTERM signals,
the behavior described on this man page might not occur.

EXAMPLES

See 10.2, “Examples of Using the Daemon Support Routines” on page 247.

RETURN VALUES

This routine has no return value. The dae_init routine will return an error
indication if any error is encountered initializing the daemon.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328
A.5, “dae_init_term_sig(3)” on page 336
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A.3 dae_init_SRC_msq(3)

NAME

dae_init_SRC_msq - Causes dae_init to initialize the daemon under the
assumption that SRC will make requests of the daemon using a message queue.

SYNOPSIS

#include <dae.h>

void dae_init_SRC_msq(
int *dae_msqid,
int dae_msqkey,
int dae_msqtype,
const dae_req_msq_t *dae_SRC_rtns,
int dae_restart

);

The dae.h file includes these definitions:

struct dae_req_msq {
void (*dae_stop_normal)(void);
void (*dae_stop_forced)(void);
void (*dae_stop_cancel)(int dae_signo);
void (*dae_trace_begin)(int dae_long);
void (*dae_trace_end) (void);
void (*dae_refresh) (void);
void (*dae_long_status)(void);
int (*dae_other_req)(short dae_request,

short dae_parm1, short dae_parm2,
const void *dae_parm3, int dae_parm3_size);

};

typedef struct dae_req_msq dae_req_msq_t;

PARAMETERS

dae_msqid If this pointer is not NULL, the message queue identifier of the message
queue through which the SRC will make requests of this daemon will be
returned through this pointer. The message queue identifier is not
returned by this routine, but it will be returned when dae_init is invoked.

If this pointer is NULL, no value is returned through the pointer.

dae_msqkey Specifies the message queue key of the message queue through which
SRC requests are expected.

dae_msqtype Specifies the expected type of the messages carrying SRC requests.
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dae_SRC_rtns Specifies the address of a dae_req_msq structure. The structure contains the
members dae_stop_normal, dae_stop_forced, dae_stop_cancel,
dae_trace_begin, dae_trace_end, dae_refresh, dae_long_status, and
dae_other_req. The meanings of these members are described in the
dae_init_SRC_sock man page. Specifying a value of NULL for dae_SRC_rtns is
semantically equivalent to specifying a pointer to a structure whose
members are all NULL.

dae_restart Specifies if the signal handler installed will cause interrupted system calls
to be automatically restarted. If the value of this parameter is 0, and a
system call is interrupted by the execution of the stop cancel signal
handler, the interrupted system call will not be restarted. If the value of
this parameter is not 0, restartable system calls interrupted by the
execution of the stop cancel signal handler will be restarted.

DESCRIPTION

A daemon calls the dae_init_SRC_msq routine when it is defined to the SRC as
accepting requests through a message queue. Through this routine′s
parameters, the calling daemon informs the daemon support routines which
message queue will be used by the SRC to send requests to the daemon, and
which routines will handle those requests. The subsystem stop cancel request is
always made through the SIGTERM signal.

The actions specified by the call to dae_init_SRC_msq are taken when the daemon
calls the dae_init routine. These actions are only taken if dae_init determines
the daemon has been started by the SRC. However, the disposition specified for
the SIGTERM signal is implemented whether or not the daemon has been started
by the SRC.

A daemon accepting requests from the SRC through a message queue must call
dae_SRC_req in a timely fashion when a request is waiting on the queue. A
daemon may determine if a request is waiting on the message queue by calling
the select routine. The dae_SRC_req routine receives a request from the queue,
decodes the request, and may call one of the routines pointed to by the
parameters of the dae_init_SRC_msq routine. For more information, see A.10,
“dae_SRC_req(3)” on page 349.

NOTES

If, after calling dae_init_SRC_msq and dae_init, the daemon process changes the
disposition of the SIGTERM signal, the behavior described on this man page might
not occur.

EXAMPLES

See 10.2, “Examples of Using the Daemon Support Routines” on page 247.

RETURN VALUES

This routine has no return value. The dae_init routine will return an error
indication if any error is encountered initializing the daemon.
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LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.2, “dae_init_SRC_sig(3)” on page 321
A.4, “dae_init_SRC_sock(3)” on page 328
A.5, “dae_init_term_sig(3)” on page 336
A.11, “dae_status_short(3)” on page 351
A.12, “dae_status_puts(3)” on page 354
A.13, “dae_status_printf(3)” on page 357
A.14, “dae_margin_puts(3)” on page 360
A.15, “dae_margin_printf(3)” on page 364
A.16, “dae_inform_puts(3)” on page 368
A.17, “dae_inform_printf(3)” on page 371
A.18, “dae_error_puts(3)” on page 374
A.19, “dae_error_printf(3)” on page 377
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A.4 dae_init_SRC_sock(3)

NAME

dae_init_SRC_sock - Causes dae_init to initialize the daemon under the
assumption that SRC will make requests of the daemon using a UNIX domain
socket.

SYNOPSIS

#include <dae.h>

void dae_init_SRC_sock(
int *dae_SRC_sockd,
const dae_req_sock_t *dae_SRC_rtns,
int dae_restart

);

The dae.h file includes these definitions:

struct dae_req_sock {
void (*dae_stop_normal)(void);
void (*dae_stop_forced)(void);
void (*dae_stop_cancel)(int dae_signo);
void (*dae_trace_begin)(int dae_long);
void (*dae_trace_end) (void);
void (*dae_refresh) (void);
void (*dae_long_status)(void);
int (*dae_other_req)(short dae_request,

short dae_parm1, short dae_parm2,
const void *dae_parm3, int dae_parm3_size);

};

typedef struct dae_req_sock dae_req_sock_t;

PARAMETERS

dae_SRC_sockd If this pointer is not NULL, it is an input/output parameter.

As an input parameter, the value of the integer pointed to by this
parameter specifies the file descriptor the daemon would like associated
with the socket through which SRC requests will arrive. File descriptors 0,
1, and 2 may not be specified. A negative file descriptor indicates that the
daemon process does not have a preference for which file descriptor is
associated with the socket.

As an output parameter, the file descriptor of the UNIX domain socket
through which the SRC will make requests of this daemon is returned
through this pointer. The file descriptor is not returned by this routine, but
it will be returned when dae_init is invoked.
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dae_SRC_rtns: Specifies the address of a dae_req_sock structure. The structure contains
the members dae_stop_normal, dae_stop_forced, dae_stop_cancel,
dae_trace_begin, dae_trace_end, dae_refresh, dae_long_status, and
dae_other_req. The meanings of these members are described in the
following paragraphs. Specifying a value of NULL for dae_SRC_rtns is
semantically equivalent to specifying a pointer to a structure whose
members are all NULL.

dae_stop_normal Specifies the address of a routine that is to be called when the daemon
receives the subsystem stop normal request from the SRC. When called,
the routine may terminate the daemon, but that is not required. When
called, the routine is just required to put the daemon in normal stop mode;
it may return without terminating the daemon. When in normal stop mode,
the daemon should not accept new requests for work. It should complete
all current requests, release resources when current requests are
completed, and then terminate itself. The subsystem stop normal request
usually originates from the stopsrc command.

The routine specified for dae_stop_normal must expect no parameters.

The routine may not return informational messages with dae_inform_printf
or dae_inform_puts, nor may it return error messages with dae_error_printf
or dae_error_puts.

If a value of NULL is specified for dae_stop_normal, the daemon support
routines will execute exit(0) when a subsystem stop normal request is
received from the SRC.

dae_stop_forced Specifies the address of a routine that is to be called when the daemon
receives the subsystem stop forced request from the SRC. When called,
the routine may terminate the daemon, but that is not required. When
called, the routine is just required to put the daemon in forced stop mode;
it may return without terminating the daemon. When in forced stop mode,
the daemon should terminate quickly, without completing current requests.
It should release resources and terminate itself as quickly as possible. The
subsystem stop forced request usually originates from the stopsrc -f
command.

The routine specified for dae_stop_forced must expect no parameters.

The routine may not return informational messages with dae_inform_printf
or dae_inform_puts, nor may it return error messages with dae_error_printf
or dae_error_puts.

If a value of NULL is specified for dae_stop_forced, the daemon support
routines will execute exit(0) when a subsystem stop forced request is
received from the SRC.
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dae_stop_cancel Specifies the address of a routine that is to be installed as the signal
handler for the SIGTERM signal. The daemon will receive the SIGTERM signal
when the SRC makes the subsystem stop cancel request of the daemon.
When called, the routine may terminate the daemon, but that is not
required. When called, the routine is just required to put the daemon in
cancel stop mode; it may return without terminating the daemon. When in
cancel stop mode, the daemon should terminate quickly, without
completing current requests. It should release resources and terminate
itself as quickly as possible. The subsystem stop cancel request usually
originates from the stopsrc -c command.

If a daemon in cancel stop mode has not terminated after a
subsystem-dependent number of seconds, the SRC terminates the daemon
by sending it the SIGKILL signal.

Like all signal handlers, the routine specified for dae_stop_cancel should
accept one parameter, an integer identifying the signal that has been
caught. The routine should return nothing.

If a value of NULL is specified for dae_stop_cancel, the disposition of the
SIGTERM signal is set to the default. This will cause the daemon to
terminate immediately when it receives the SIGTERM signal.

dae_trace_begin Specifies the address of a routine that is to be called when the daemon
receives the subsystem trace on request from the SRC. When called, the
routine is expected to put the daemon in tracing mode, and return. The
meaning of tracing mode is subsystem-dependent. The subsystem trace
on request usually originates from the traceson command.

The routine specified for dae_trace_begin should accept one parameter, an
integer indicating if long tracing mode is requested. If the integer′s value
is non-zero, the daemon should enter long tracing mode. If the integer′s
value is zero, the daemon should enter short tracing mode. The
differences between short and long tracing modes are
subsystem-dependent.

If the routine detects an error putting the daemon in tracing mode, the
routine may call dae_error_printf or dae_error_puts to return an error
message. The error message will be displayed on the standard output of
the process that sent the subsystem trace on request. If the sending
process is executing the traceson command, it will exit with an error code.
An attempt to put the daemon in tracing mode when it is already in tracing
mode should not be considered an error.

If the routine encounters no errors putting the daemon in tracing mode, it
should not call dae_error_printf nor dae_error_puts. If the routine returns
without calling either of those error routines, the process that sent the
subsystem trace on request will receive an indication of success.

The routine may cause informational messages to be displayed on the
standard output of the process that sent the subsystem trace on request by
calling the dae_inform_printf and dae_inform_puts routines.

A value of NULL for dae_trace_begin indicates the daemon does not support
the SRC subsystem trace on request.
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dae_trace_end Specifies the address of a routine that is to be called when the daemon
receives the subsystem trace off request from the SRC. When called, the
routine is expected to take the daemon out of tracing mode, and return.
The meaning of tracing mode is subsystem-dependent. The subsystem
trace off request usually originates from the tracesoff command.

The routine specified for dae_trace_end should expect no parameters.

If the routine detects an error taking the daemon out of tracing mode, the
routine may call dae_error_printf or dae_error_puts to return an error
message. The error message will be displayed on the standard output of
the process that sent the subsystem trace off request. If the sending
process is executing the tracesoff command, it will exit with an error code.
An attempt to take the daemon out of tracing mode when it is not in tracing
mode should not be considered an error.

If the routine encounters no errors taking the daemon out of tracing mode,
it should not call dae_error_printf nor dae_error_puts. If the routine
returns without calling either of those error routines, the process that sent
the subsystem trace off request will receive an indication of success.

The routine may cause informational messages to be displayed on the
standard output of the process that sent the subsystem trace off request by
calling the dae_inform_printf and dae_inform_puts routines.

A value of NULL for dae_trace_end indicates the daemon does not support
the SRC subsystem trace off request.

dae_refresh Specifies the address of a routine that is to be called when the daemon
receives the subsystem refresh request from the SRC. When called, the
routine is expected to refresh the daemon, and return. The meaning of
refreshing the daemon is subsystem-dependent. If a daemon has a
configuration file, it is common for the daemon to re-read the configuration
file when receiving the subsystem refresh request. The subsystem refresh
request usually originates from the refresh command.

The routine specified for dae_refresh should expect no parameters.

If the routine detects an error refreshing the daemon, the routine may call
dae_error_printf or dae_error_puts to return an error message. The error
message will be displayed on the standard output of the process that sent
the subsystem refresh request. If the sending process is executing the
refresh command, it will exit with an error code.

If the routine encounters no errors refreshing the daemon, it should not call
dae_error_printf nor dae_error_puts. If the routine returns without calling
either of those error routines, the process that sent the subsystem refresh
request will receive an indication of success.

The routine may cause informational messages to be displayed on the
standard output of the process that sent the subsystem refresh request by
calling the dae_inform_printf and dae_inform_puts routines.

A value of NULL for dae_refresh indicates the daemon does not support the
SRC subsystem refresh request.
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dae_long_status Specifies the address of a routine that is to be called when the daemon
receives the subsystem long status request from the SRC. When called,
the routine is expected to provide the long status of the daemon, and
return. The status provided is subsystem-dependent. The
dae_status_short, dae_status_puts, dae_status_printf, dae_margin_puts, and
dae_margin_printf routines can be called to provide the status. See the
man pages for those routines for details, as noted in “RELATED
INFORMATION.” The status is displayed on the standard output of the
process which sent the subsystem long status request. This request
usually originates from the lssrc command.

The routine specified for dae_long_status should expect no parameters.

If the routine detects an error reporting the status of the daemon, the
routine may call dae_error_printf or dae_error_puts to return an error
message. The error message will be displayed on the standard output of
the process that sent the subsystem long status request. If the sending
process is executing the lssrc command, it will exit with an error code.

If the routine encounters no errors reporting the status of the daemon, it
should not call dae_error_printf nor dae_error_puts. If the routine returns
without calling either of those error routines, the process that sent the
subsystem long status request will receive an indication of success.

The routine may cause informational messages to be displayed on the
standard output of the process that sent the subsystem long status request
by calling the dae_inform_printf and dae_inform_puts routines. These
informational messages may be intermixed with the returned status.

A value of NULL for dae_long_status indicates the daemon does not support
the SRC subsystem long status request.
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dae_other_req Specifies the address of a routine that is to be called when the daemon
receives a subsystem request other than the standard requests discussed
in the preceding paragraphs. When called, the routine is expected to
process the request, and return. The meaning of the requests handled by
this routine are subsystem-dependent. The subsystem requests processed
by this routine usually originate from commands not provided with the
SRC. See Chapter 12, “New SRC Program Support” on page 303 for
information about how these commands can be created.

The routine specified for dae_other_req should expect five parameters. The
first parameter, dae_request, identifies the specific request being made of
the subsystem. The number representing a request must be agreed upon
between the subsystem and the command generating the request. See
10.2.5, “Running under the SRC: Subsystem-Defined Requests” on
page 271 for details. The dae_parm1, dae_parm2, and dae_parm3 parameters
are request parameters that may modify the meaning of the request. The
values of these parameters may or may not be significant for a particular
request. The dae_parm1 and dae_parm2 parameters can hold signed short
integer values. The dae_parm3 parameter can point to any arbitrary data
type. The dae_parm3_size parameter indicates the size of the data pointed
to by the dae_parm3 parameter.

If the subsystem does not support the request identified by dae_request, the
routine should return a value of 1. If the subsystem does support the
request identified by dae_request, the routine should process the request
and return 0.

If the routine detects an error while processing the request, the routine
may call dae_error_printf or dae_error_puts to return an error message.
The error message will be displayed on the standard output of the process
that sent the request.

If the routine encounters no errors processing the request, it should not
call dae_error_printf nor dae_error_puts. If the routine returns without
calling either of those error routines, the process that sent the request will
receive an indication of success.

The routine may cause informational messages to be displayed on the
standard output of the process that sent the request by calling the
dae_inform_printf and dae_inform_puts routines.

A value of NULL for dae_other_req indicates the daemon does not support
additional subsystem requests.

dae_restart Specifies if the signal handler installed will cause interrupted system calls
to be automatically restarted. If the value of this parameter is 0, and a
system call is interrupted by the execution of the stop cancel signal
handler, the interrupted system call will not be restarted. If the value of
this parameter is not 0, restartable system calls interrupted by the
execution of the stop cancel signal handler will be restarted.

DESCRIPTION

A daemon calls the dae_init_SRC_sock routine when it is defined to the SRC as
accepting requests through a UNIX domain socket. Through this routine′s
parameters, the calling daemon informs the daemon support routines which
routines will handle SRC requests sent to the daemon. The subsystem stop
cancel request is always made through the SIGTERM signal.
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The actions specified by the call to dae_init_SRC_sock are taken when the
daemon calls the dae_init routine. These actions are only taken if dae_init
determines the daemon has been started by the SRC. However, the disposition
specified for the SIGTERM signal is implemented whether or not the daemon has
been started by the SRC.

A daemon accepting requests from the SRC through a socket must call
dae_SRC_req in a timely fashion when a request is waiting on the socket. A
daemon may determine if a request is waiting on the socket by calling the select
routine. The dae_SRC_req routine receives a request from the socket, decodes
the request, and may call one of the routines pointed to by the parameters of the
dae_init_SRC_sock routine. For more information, see A.10, “dae_SRC_req(3)” on
page 349.

NOTES

If, after calling dae_init_SRC_sock and dae_init, the daemon process changes the
disposition of the SIGTERM signal, the behavior described on this man page might
not occur.

EXAMPLES

See 10.2, “Examples of Using the Daemon Support Routines” on page 247.

RETURN VALUES

This routine has no return value. The dae_init routine will return an error
indication if any error is encountered initializing the daemon.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

If this routine is called by a program linked with the libdae.a library, the
dae_init routine will fail and return DAE_E_SRCPREP.
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RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.2, “dae_init_SRC_sig(3)” on page 321
A.3, “dae_init_SRC_msq(3)” on page 325
A.5, “dae_init_term_sig(3)” on page 336
A.11, “dae_status_short(3)” on page 351
A.12, “dae_status_puts(3)” on page 354
A.13, “dae_status_printf(3)” on page 357
A.14, “dae_margin_puts(3)” on page 360
A.15, “dae_margin_printf(3)” on page 364
A.16, “dae_inform_puts(3)” on page 368
A.17, “dae_inform_printf(3)” on page 371
A.18, “dae_error_puts(3)” on page 374
A.19, “dae_error_printf(3)” on page 377
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A.5 dae_init_term_sig(3)

NAME

dae_init_term_sig - Causes dae_init to initialize the disposition of the SIGTERM
signal.

SYNOPSIS

#include <dae.h>

void dae_init_term_sig(
void (*dae_term_rtn)(int dae_signo),
int dae_restart

);

PARAMETERS

dae_term_rtn Specifies the address of a routine that is to be installed as the signal
handler for the SIGTERM signal. It is common for a daemon to be sent the
SIGTERM signal when it should be stopped.

Like all signal handlers, the routine specified for dae_term_rtn should
accept one parameter, an integer identifying the signal that has been
caught. The routine should return nothing.

If a value of NULL is specified for dae_term_rtn, the disposition of the SIGTERM
signal is set to the default. This will cause the daemon to terminate
immediately when it receives the SIGTERM signal.

dae_restart Specifies if the signal handler installed will cause interrupted system calls
to be automatically restarted. If the value of this parameter is 0, and a
system call is interrupted by the execution of the signal handler, the
interrupted system call will not be restarted. If the value of this parameter
is not 0, restartable system calls interrupted by the execution of the signal
handler will be restarted.

DESCRIPTION

A daemon calls the dae_init_term_sig routine when it will never be started by
the SRC, but it wants to set the disposition of the SIGTERM signal. A daemon that
will always be started by inetd might use this routine. An alternative to using
this routine is for the daemon to change the disposition of the SIGTERM signal
itself by using the sigaction routine.

The disposition changes for the SIGTERM signal requested by the call to
dae_init_term_sig are made when the daemon calls the dae_init routine.

NOTES

If, after calling dae_init_term_sig and dae_init, the daemon process changes the
disposition of the SIGTERM signal, the behavior described on this man page might
not occur.
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EXAMPLES

See 10.2, “Examples of Using the Daemon Support Routines” on page 247.

RETURN VALUES

This routine has no return value. The dae_init routine will return an error
indication if any error is encountered initializing the daemon.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.2, “dae_init_SRC_sig(3)” on page 321
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328

Appendix A. Daemon Support Routines man Pages 337



A.6 dae_init_prevent_zombies(3)

NAME

dae_init_prevent_zombies - Causes dae_init to prevent the daemon process from
creating zombie processes.

SYNOPSIS

#include <dae.h>

void dae_init_prevent_zombies(
dae_parent_t dae_parent,
int dae_restart

);

PARAMETERS

dae_parent Specifies the conditions under which zombies will be prevented. Zombies
will be prevented only when the daemon was started in a manner specified
by this parameter. The value of this parameter is formed by using one or
more of these constants as operands in an OR operation:

• DAE_P_SRC: If the daemon was started by the SRC, zombies will be
prevented.

• DAE_P_INETD: If the daemon was started by inetd, zombies will be
prevented.

• DAE_P_OTHER: If the daemon was not started by inetd nor by SRC,
zombies will be prevented.

dae_restart Specifies if the signal handler installed will cause interrupted system calls
to be automatically restarted. If the value of this parameter is 0, and a
system call is interrupted by the execution of the signal handler, the
interrupted system call will not be restarted. If the value of this parameter
is not 0, restartable system calls interrupted by the execution of the signal
handler will be restarted.

DESCRIPTION

If a daemon will create child processes, but is not interested in knowing when
the child processes terminate and is not interested in the exit values of the child
processes, it may call dae_init_prevent_zombies to ensure its child processes do
not become long lasting zombie processes. By default, a terminated process
remains a zombie process until its parent process has collected its exit status.
On many systems, including AIX, ignoring the SIGCHLD signal will prevent a
process ′ terminated child processes from becoming zombie processes. On
systems that support this semantic, a call to dae_init_prevent_zombies will cause
dae_init to ignore the SIGCHLD signal. On systems that do not support this
semantic, the dae_init_prevent_zombies routine will cause dae_init to install a
signal handler for SIGCHLD that will cleanup zombie processes by calling waitpid.
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NOTES

If, after calling dae_init_prevent_zombies and dae_init, the daemon process
changes the disposition of the SIGCHLD signal, the behavior described on this man
page might not occur.

This routine may cause the installation of a signal handler that returns. As a
result, system calls in the daemon process may be interrupted.

EXAMPLES

See 10.2, “Examples of Using the Daemon Support Routines” on page 247.

RETURN VALUES

This routine has no return value. The dae_init routine will return an error
indication if any error is encountered initializing the daemon.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page section in this appendix is related:

A.1, “dae_init(3)” on page 316
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A.7 dae_init_lowps(3)

NAME

dae_init_lowps - Causes dae_init to install a signal handler for the SIGDANGER
signal. This will protect the daemon process from termination when the system
is low on paging space.

SYNOPSIS

#include <dae.h>

void dae_init_lowps(
dae_parent_t dae_parent,
void (*dae_lowps)(int dae_signo),
int dae_restart

);

PARAMETERS

dae_parent Specifies the conditions under which the SIGDANGER signal handler will be
installed. The SIGDANGER signal handler will be installed only when the
daemon was started in a manner specified by this parameter. The value of
this parameter is formed by using one or more of these constants as
operands in an OR operation:

• DAE_P_SRC: If the daemon was started by the SRC, the SIGDANGER signal
handler should be installed.

• DAE_P_INETD: If the daemon was started by inetd, the SIGDANGER signal
handler should be installed.

• DAE_P_OTHER: If the daemon was not started by inetd nor by SRC, the
SIGDANGER signal handler should be installed.

dae_lowps Specifies the address of a routine that is to be installed as the signal
handler for the SIGDANGER signal, or specifies a value of NULL. If the value of
dae_lowps is not NULL, the specified signal handler is installed for SIGDANGER.
If the value of dae_lowps is NULL, a signal handler that does nothing but
return is installed for the SIGDANGER signal.

dae_restart Specifies if the signal handler installed will cause interrupted system calls
to be automatically restarted. If the value of this parameter is 0, and a
system call is interrupted by the execution of the signal handler, the
interrupted system call will not be restarted. If the value of this parameter
is not 0, restartable system calls interrupted by the execution of the signal
handler will be restarted.

DESCRIPTION

A daemon calls the dae_init_lowps routine to install a signal handler for the
SIGDANGER signal. A daemon might want to install such a signal handler to
disclaim a region of memory when the system is low on free paging space, or to
protect itself from termination if the system starts killing processes when the
level of free paging space becomes critical.
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The specified signal handler will not actually be installed until the daemon
process calls the dae_init routine.

On an AIX system, when the number of free paging-space blocks falls below a
configurable warning level, the kernel sends the SIGDANGER signal to all
processes running on the system. By default, the SIGDANGER signal is ignored.
Processes may choose to install a signal handler for SIGDANGER that will disclaim
regions of memory whose contents are not needed. This may increase the
number of free paging-space blocks available to the system. If the number of
free paging-space blocks falls below a configurable kill level, the kernel starts
sending SIGKILL signals to selected processes until the number of free
paging-space blocks exceeds the kill level. A process that has a SIGDANGER
signal handler installed will not be killed in low paging space situations.

NOTES

If, after calling dae_init_lowps and dae_init, the daemon process changes the
disposition of the SIGDANGER signal, the behavior described on this man page
might not occur.

This routine causes the installation of a signal handler that returns. As a result,
system calls in the daemon process may be interrupted.

A daemon may protect itself from being terminated when the system is low on
free paging-space blocks by either calling dae_init_psalloc to force the daemon
to run with the early paging space allocation policy, or calling dae_init_lowps to
install a signal handler for the SIGDANGER signal. A daemon may call both
routines if it wants to specify the paging space allocation policy with which it
runs, and it wants to install a signal handler for the SIGDANGER signal.

EXAMPLES

See 10.2, “Examples of Using the Daemon Support Routines” on page 247.

RETURN VALUES

This routine has no return value. The dae_init routine will return an error
indication if any error is encountered initializing the daemon.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

PORTABILITY

On a non-AIX system, calling this routine has no effect.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.8, “dae_init_psalloc(3)” on page 342
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A.8 dae_init_psalloc(3)

NAME

dae_init_psalloc - Causes dae_init to set the paging space allocation policy of
the daemon process as specified by the parameters.

SYNOPSIS

#include <dae.h>

void dae_init_psalloc(
dae_parent_t dae_parent,
dae_psalloc_t dae_ps_policy,
const char *dae_prog_path,
char * const dae_argv[]

);

The dae.h file includes these definitions:

enum dae_psalloc {
DAE_A_DONT_CARE = 0,
DAE_A_LATE_TRY,
DAE_A_EARLY_TRY,
DAE_A_LATE,
DAE_A_EARLY,
DAE_A_INVALID
};

typedef enum dae_psalloc dae_psalloc_t;

PARAMETERS

dae_parent Specifies the conditions under which the paging space allocation policy will
be set, as described by the dae_ps_policy parameter. The paging space
allocation policy will be set only when the daemon was started in a manner
specified by this parameter. The value of this parameter is formed by
using one or more of these constants as operands in an OR operation:

• DAE_P_SRC: If the daemon was started by the SRC, the paging space
allocation policy will be set as described by the dae_ps_policy
parameter.

• DAE_P_INETD: If the daemon was started by inetd, the paging space
allocation policy will be set as described by the dae_ps_policy
parameter.

• DAE_P_OTHER: If the daemon was not started by inetd nor by SRC, the
paging space allocation policy will be set as described by the
dae_ps_policy parameter.
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dae_ps_policy Specifies the paging space allocation policy desired. The possible values
are:

• DAE_A_DONT_CARE: Do not change the paging space allocation policy of
the process.

• DAE_A_LATE_TRY: Attempt to make the process run with the late paging
space allocation policy; do not verify the results.

• DAE_A_EARLY_TRY: Attempt to make the process run with the early paging
space allocation policy; do not verify the results.

• DAE_A_LATE: Make the process run with the late paging space allocation
policy; verify the results.

• DAE_A_EARLY: Make the process run with the early paging space
allocation policy; verify the results.

dae_prog_path Specifies the full path name of the program being executed as the daemon.
If the dae_ps_policy parameter is set to DAE_A_LATE_TRY, DAE_A_EARLY_TRY,
DAE_A_LATE, or DAE_A_EARLY, the dae_init routine may re-execute this
program.

dae_argv Specifies the arguments with which the daemon program was started. If
the dae_ps_policy parameter is set to DAE_A_LATE_TRY, DAE_A_EARLY_TRY,
DAE_A_LATE, or DAE_A_EARLY, the dae_init routine may re-execute this
program.

DESCRIPTION

On AIX systems, processes run with the late paging space allocation policy in
effect by default. The policy with which a process runs can be changed using
the PSALLOC environment variable. When exec is issued for a program, the value
of the PSALLOC environment variable is examined by the kernel. If the variable
has the value early, the program runs with the early paging space allocation
policy in effect; otherwise, it runs with the late paging space allocation policy in
effect.

A daemon may call the dae_init_psalloc routine if it wants to run with a specific
paging space allocation policy. The paging space allocation policy is not
changed until the dae_init routine is called. The dae_init routine ensures that
the daemon process runs with the desired paging space allocation policy. It also
arranges for child processes of the daemon process to run with the late paging
space allocation policy.

If dae_init_psalloc had been called to request a specific paging space allocation
policy for the daemon process, the dae_init routine will follow these steps:

 1. Retrieve the process flags of the process. If the process flags indicate the
process is already running with the desired paging space allocation policy,
proceed to step 4.

 2. If early paging space allocation is desired, put PSALLOC=early in the
environment of the process, if it is not already there. If late paging space
allocation is desired, put PSALLOC=late in the environment of the process, if
the environment does not already contain a value for PSALLOC that is
consistent with the late paging space allocation policy.

 3. Re-execute the daemon program. The path name used is that provided by
the dae_prog_path parameter. The arguments used are those provided
through the dae_argv parameter. This is the only mechanism available to
change the paging space allocation policy used by a running process. The
re-executed daemon program will call dae_init again. In step 1, dae_init
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should find that the process flags indicate the process is running with the
desired paging space allocation policy. Therefore, step 1 should take the
branch to step 4.

 4. If the current setting of PSALLOC in the environment of the process is not
consistent with the late paging space allocation policy, put PSALLOC=late in
the environment of the process. Child processes of the daemon process will
inherit this value in their environments. They will then run with the late
paging space allocation policy in effect after they exec a program.

It is very significant that dae_init may issue exec again for the daemon program
to change the daemon process′ paging space allocation policy. The following
points should be kept in mind:

• The value of the dae_prog_path parameter must be correct. If it is not
correct, exec will not function for the program correctly.

• The arguments of the program, anchored by dae_argv, must not have been
changed by the daemon program; otherwise, the program will get different
arguments when exec is re-issued.

• All the actions taken by the daemon program from the beginning of the main
routine to the call to exec in dae_init must be repeatable and harmless when
repeated.

NOTES

A daemon may protect itself from being terminated when the system is low on
free paging-space blocks by either calling dae_init_psalloc to force the daemon
to run with the early paging space allocation policy, or calling dae_init_lowps to
install a signal handler for the SIGDANGER signal. A daemon may call both
routines if it wants to specify the paging space allocation policy with which it
runs, and it wants to install a signal handler for the SIGDANGER signal.

EXAMPLES

See 10.2, “Examples of Using the Daemon Support Routines” on page 247.

RETURN VALUES

This routine has no return value. The dae_init routine will return an error
indication if any error is encountered when initializing the daemon.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

PORTABILITY

On a non-AIX system, this routine should only be called with the dae_ps_policy
parameter set to DAE_A_DONT_CARE, DAE_A_LATE_TRY, or DAE_A_EARLY_TRY. Such a
call would have no effect on the calling program. If this routine is called with
any other value for the dae_ps_policy parameter, the call to dae_init will fail and
return the error value DAE_E_NOPSALLOC.
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An AIX 3.2 system may or may not support the early paging space allocation
policy. If DAE_A_EARLY is specified on a call to dae_init_psalloc on an AIX 3.2
system that does not support the early paging space allocation policy, dae_init
will fail. This problem can be avoided by specifying DAE_A_EARLY_TRY on calls to
dae_init_psalloc on AIX 3.2 systems.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.7, “dae_init_lowps(3)” on page 340
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A.9 dae_init_exclusive(3)

NAME

dae_init_exclusive - Causes dae_init to enforce the exclusivity requirements of
the daemon.

SYNOPSIS

#include <dae.h>

void dae_init_exclusive(
dae_parent_t dae_parent,
const char *dae_excl_path,
char dae_excl_ID

);

PARAMETERS

dae_parent Specifies the conditions under which exclusivity should be enforced. The
exclusivity described by the remaining parameters will only be enforced
when the daemon is started in a manner specified by this parameter. The
value of this parameter is formed by using one or more of these constants
as operands in an OR operation:

• DAE_P_SRC: If the daemon was started by the SRC, exclusivity will be
enforced as specified by the other parameters.

• DAE_P_INETD: If the daemon was started by inetd, exclusivity will be
enforced as specified by the other parameters.

• DAE_P_OTHER: If the daemon was not started by inetd nor by SRC,
exclusivity will be enforced as specified by the other parameters.

dae_excl_path Points to a path name that is used in conjunction with the dae_excl_ID
parameter to enforce the exclusivity requirements of the daemon. This is
commonly the full path name of the daemon program.

dae_excl_ID Specifies a project ID that is used in conjunction with the dae_excl_path
parameter to enforce the exclusivity requirements of the daemon. This
must be a value from 1 to 255.

DESCRIPTION

It is not uncommon for a daemon to have some sort of requirement relating to
exclusivity. For example, a daemon program may be designed such that only
one process should ever be running the program on a system. On a control
workstation associated with a partitioned RS/6000 SP system, it may be
necessary to have multiple processes running the same daemon, one and only
one for each RS/6000 SP partition. The dae_init_exclusive routine can be used
to instruct dae_init to enforce the desired exclusivity.

The exclusivity requirements are enforced using System V semaphores. The
daemon support routines generate a semaphore key using the ftok routine, and
the values of dae_excl_path and dae_excl_ID. In order for the dae_init routine to
succeed, the semaphore must be successfully locked by the daemon process.
The semaphore remains locked for the lifetime of the daemon process. If the
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semaphore cannot be locked, allowing the process to run as the daemon would
violate the exclusivity requirements of the daemon. Therefore, dae_init will
return an error indication to the daemon.

If only one process should run the daemon program on the system at any one
time, the daemon program should call dae_init_exclusive with constant values
for dae_excl_path and dae_excl_ID. The combined values should be unlikely to be
used by some other program. Convenient values might be the full path name of
the daemon program, and 1.

If one process per RS/6000 SP partition should run the daemon program on the
system at any one time, the daemon program should call dae_init_exclusive
with a constant value for dae_excl_path that is unique to the daemon program,
and a value for dae_excl_ID that depends on the RS/6000 SP partition to be
supported by the calling process. Convenient values might be the full path name
of the daemon program for dae_excl_path, and the partition number for
dae_excl_ID.

The value used for dae_excl_path must be the path of an existing file. It should
also be the path of a file that is not often recreated or replaced. Two calls to
ftok may return different keys if the file referred to was recreated between the
calls.

The SRC, inetd, and init have mechanisms to allow only one instance of a
particular daemon to run at a time on a system. These mechanisms are useful
and should be used, as appropriate. However, these mechanisms can fail. The
SRC mechanism fails whenever srcmstr is terminated and respawned. The inetd
mechanism fails when inetd is terminated and respawned. None of the
mechanisms prevent other instances of the daemon being started from a shell.
The dae_init_exclusive routine allows a daemon to enforce exclusivity rules in
the event the other mechanisms fail.

NOTES

When the daemon terminates, the semaphore lock will be automatically
released. If the daemon terminates by calling the exit routine, the semaphore
will also be removed from the system. If the daemon terminates without calling
the exit routine, the semaphore will remain in the system, but it will not be
locked.

EXAMPLES

See 10.2, “Examples of Using the Daemon Support Routines” on page 247.

RETURN VALUES

This routine has no return value. The dae_init routine will return an error
indication if any error is encountered initializing the daemon.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.
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RELATED INFORMATION

The following man page section in this appendix is related:

A.1, “dae_init(3)” on page 316
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A.10 dae_SRC_req(3)

NAME

dae_SRC_req - Processes the next request on the SRC message queue or socket.

SYNOPSIS

#include <dae.h>

void dae_SRC_req(void);

PARAMETERS

This routine takes no parameters.

DESCRIPTION

The dae_SRC_req routine should be called by a daemon when it detects that the
message queue or socket through which SRC requests arrive contains an SRC
request. The daemon can determine this using the select routine. The
dae_SRC_req routine reads the next request from the SRC message queue or
socket in a non-blocking fashion. If the message queue or socket does not
contain an SRC request, the dae_SRC_req routine returns immediately.

If an SRC request is successfully read, the type of the request is determined, and
dae_SRC_req determines if the daemon has identified a routine to handle the
request. The daemon would have identified routines to handle SRC requests by
calling dae_init_SRC_msq or dae_init_SRC_sock. If the daemon has not identified a
routine to handle the request, or the request is not a valid SRC request, or the
SRC request is not a subsystem request, dae_SRC_req replies to the process
making the SRC request with an appropriate error code. If the daemon has
identified a routine to handle the request, that routine is called. If the request
handling routine calls dae_error_puts or dae_error_printf before returning to
dae_SRC_req, the request will be considered to have resulted in an error. If the
routine returns to dae_SRC_req without having called dae_error_puts or
dae_error_printf, the request is considered to have been successful. In either
case, dae_SRC_req makes the appropriate reply. The interfaces of and semantics
associated with the request handling routines are described in A.3,
“dae_init_SRC_msq(3)” on page 325 and A.4, “dae_init_SRC_sock(3)” on
page 328.

EXAMPLES

See 10.2, “Examples of Using the Daemon Support Routines” on page 247.

RETURN VALUES

There is no return value.
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LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328
A.11, “dae_status_short(3)” on page 351
A.12, “dae_status_puts(3)” on page 354
A.13, “dae_status_printf(3)” on page 357
A.14, “dae_margin_puts(3)” on page 360
A.15, “dae_margin_printf(3)” on page 364
A.16, “dae_inform_puts(3)” on page 368
A.17, “dae_inform_printf(3)” on page 371
A.18, “dae_error_puts(3)” on page 374
A.19, “dae_error_printf(3)” on page 377
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A.11 dae_status_short(3)

NAME

dae_status_short - Includes subsystem short status in subsystem long status
output.

SYNOPSIS

#include <dae.h>

int dae_status_short(void);

PARAMETERS

This routine takes no parameters.

DESCRIPTION

When the dae_status_short routine is called from a routine supporting the SRC
subsystem long status request, the subsystem short status of the calling
subsystem is included in the subsystem long status output.

The subsystem short status output starts a new line of output, if necessary.

The dae_status_short routine may be called from the time dae_SRC_req calls a
routine to process the SRC subsystem long status request until the routine called
by dae_SRC_req returns. The routine dae_SRC_req calls to process the SRC
subsystem long status request is specified as the dae_long_status member of the
dae_SRC_rtns parameter in a call to the dae_init_SRC_msq routine or the
dae_init_SRC_sock routine.

NOTES

The subsystem short status output is obtained from the SRC daemon, srcmstr. If
srcmstr cannot respond to the request, the dae_status_short routine may take 60
seconds to complete.

The output generated by dae_status_short is not necessarily sent immediately to
the process making the subsystem long status request. The subsystem long
status output is buffered within the daemon support routines. Any buffered
output will be sent to the process making the subsystem long status request
when the routine supporting the SRC subsystem long status request returns.
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EXAMPLES

Assume the routine designated to handle the subsystem long status request for
subsystem des.ex.sock is report_status, as shown here:

static void report_status(void)
{

dae_status_short();

dae_status_printf(″\nI′ ve seen %d client connections.\n″ ,
client_count);

dae_status_puts(tracing_on ? ″Tracing is on.\n″
: ″Tracing is off.\n″ ) ;

return;
}

The output generated by a subsystem long status request made for des.ex.sock
might appear as follows:

# lssrc -ls des.ex.sock
Subsystem Group PID Status
 des.ex.sock des.ex 8418 active

 I′ ve seen 0 client connections.
 Tracing is off.

The first two lines of output from the lssrc command are created by the call to
dae_status_short in report_status.

RETURN VALUES

If the routine is successful, it returns 0. If the routine is not successful, it returns
-1. The error conditions detectable by the routine are:

• The daemon is not currently processing a subsystem long status request.
• Memory could not be obtained to receive the subsystem short status output.

A successful return code is not a guarantee that the subsystem short status
output is received by the process making the subsystem long status request.

The routine does not change errno.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.
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RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328
A.12, “dae_status_puts(3)” on page 354
A.13, “dae_status_printf(3)” on page 357
A.14, “dae_margin_puts(3)” on page 360
A.15, “dae_margin_printf(3)” on page 364
A.16, “dae_inform_puts(3)” on page 368
A.17, “dae_inform_printf(3)” on page 371
A.18, “dae_error_puts(3)” on page 374
A.19, “dae_error_printf(3)” on page 377
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A.12 dae_status_puts(3)

NAME

dae_status_puts - Provides an interface similar to puts for specifying the
subsystem long status output.

SYNOPSIS

#include <dae.h>

int dae_status_puts(const char *dae_str);

PARAMETERS

dae_str Pointer to a null terminated string that is placed in the body of the
subsystem long status output.

DESCRIPTION

When the dae_status_puts routine is called from a routine supporting the SRC
subsystem long status request, the string pointed to by the dae_str parameter is
placed in the body of the current line of subsystem long status output.

The dae_status_puts routine behaves like puts as much as possible. Known
differences between puts and dae_status_puts are:

• The puts routine displays its output on the standard output of the calling
process. The output of dae_status_puts is sent to the process making the
SRC subsystem long status request. That process usually displays the
output on its standard output.

• The puts routine always appends a newline character at the end of the
string. The dae_status_puts routine does not do so. In this respect, the
dae_status_puts routine is similar to fputs.

• The dae_status_puts routine cannot place more than 64 characters in the
body area of a line. Therefore, the routine may insert line breaks where they
are not specified in the string. If the string contains % characters, fewer
then 64 characters may fit in the body area of a line.

The dae_status_puts routine may be called from the time dae_SRC_req calls a
routine to process the SRC subsystem long status request until the routine called
by dae_SRC_req returns. The routine dae_SRC_req calls to process the SRC
subsystem long status request is specified as the dae_long_status member of the
dae_SRC_rtns parameter in a call to the dae_init_SRC_msq routine or the
dae_init_SRC_sock routine.

NOTES

The SRC imposes a structure on the output of the lssrc command that limits the
format of subsystem long status output. A goal of the daemon support routines
that support the generation of subsystem long status output is to generalize the
format as much as possible. This is accomplished using the model of the
subsystem long status output format described in the next paragraph.
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Each line of the subsystem long status output is viewed as being composed of a
margin, a separator column, and a body area. The width of the margin can be
changed dynamically; by default, it is zero characters wide; it can be up to 29
characters wide. The width of the separator column is constant; it is one
character wide. The width of the body area depends on the data placed there,
up to a maximum of 64 characters.

The dae_margin_puts and dae_margin_printf routines can be used to define the
width of the margin and to place data in the margin. If too many characters are
specified to be placed in the margin, the data wraps to the margin of the next
line of output. Once the dae_margin_puts or dae_margin_printf routine changes
the margin width, the change is in effect until another call to one of these
routines changes the margin width again.

The separator column is always blank.

The dae_status_puts and dae_status_printf routines can be used to put data in
the body area. If too many characters are specified to be placed in the body
area, the data wraps to the body area of the next line of output.

The output generated by dae_status_puts is not necessarily sent immediately to
the process making the subsystem long status request. The subsystem long
status output is buffered within the daemon support routines. Any buffered
output will be sent to the process making the subsystem long status request
when the routine supporting the SRC subsystem long status request returns.

EXAMPLES

Assume the routine designated to handle the subsystem long status request for
subsystem des.ex.sock is report_status, as shown here:

static void report_status(void)
{

dae_status_short();

dae_status_printf(″\nI′ ve seen %d client connections.\n″ ,
client_count);

dae_status_puts(tracing_on ? ″Tracing is on.\n″
: ″Tracing is off.\n″ ) ;

return;
}

The output generated by a subsystem long status request made for des.ex.sock
might appear as follows:

# lssrc -ls des.ex.sock
Subsystem Group PID Status
 des.ex.sock des.ex 8418 active

 I′ ve seen 0 client connections.
 Tracing is off.

The line of output stating, “Tracing is off.” was created by the call to
dae_status_puts in report_status. The blank before the output created by
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dae_status_puts is the separator column. Since neither dae_margin_puts nor
dae_margin_printf was called, the margin is 0 bytes wide.

RETURN VALUES

If the routine is successful, it returns the string length of the string pointed to by
the dae_str parameter. If the routine is not successful, it returns EOF. The error
condition detectable by the routine follows:

• The daemon is not currently processing a subsystem long status request.

A successful return code is not a guarantee that the output is received by the
process making the subsystem long status request.

The routine does not change errno.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328
A.11, “dae_status_short(3)” on page 351
A.13, “dae_status_printf(3)” on page 357
A.14, “dae_margin_puts(3)” on page 360
A.15, “dae_margin_printf(3)” on page 364
A.16, “dae_inform_puts(3)” on page 368
A.17, “dae_inform_printf(3)” on page 371
A.18, “dae_error_puts(3)” on page 374
A.19, “dae_error_printf(3)” on page 377
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A.13 dae_status_printf(3)

NAME

dae_status_printf - Provides an interface similar to printf for specifying the
subsystem long status output.

SYNOPSIS

#include <dae.h>

int dae_status_printf(const char *dae_fmt, ...);

PARAMETERS

dae_fmt Pointer to a null terminated string that specifies the format of data to be
placed in the body of the subsystem long status output. See the printf
man page for information about the format string.

... Arguments formatted under the control of the dae_fmt parameter. See the
printf man page for information about these arguments.

DESCRIPTION

When the dae_status_printf routine is called from a routine supporting the SRC
subsystem long status request, the string pointed to by the dae_fmt parameter
and the arguments that follow are used to create an output string that is placed
in the body of the current line of subsystem long status output.

The dae_status_printf routine behaves like printf as much as possible. Known
differences between printf and dae_status_printf are:

• The printf routine displays its output on the standard output of the calling
process. The output of dae_status_printf is sent to the process making the
SRC subsystem long status request. That process usually displays the
output on its standard output.

• The dae_status_printf routine cannot place more than 64 characters in the
body area of a line. So, the routine may insert line breaks where they are
not specified in the output string. If the output string contains % characters,
fewer then 64 characters may fit in the body area of a line.

The dae_status_printf routine may be called from the time dae_SRC_req calls a
routine to process the SRC subsystem long status request until the routine called
by dae_SRC_req returns. The routine dae_SRC_req calls to process the SRC
subsystem long status request is specified as the dae_long_status member of the
dae_SRC_rtns parameter in a call to the dae_init_SRC_msq routine or the
dae_init_SRC_sock routine.

NOTES

The SRC imposes a structure on the output of the lssrc command that limits the
format of subsystem long status output. A goal of the daemon support routines
that support the generation of subsystem long status output is to generalize the
format as much as possible. This is accomplished using the model of the
subsystem long status output format described in the next paragraph.
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Each line of the subsystem long status output is viewed as being composed of a
margin, a separator column, and a body area. The width of the margin can be
changed dynamically; by default, it is zero characters wide, but it can be up to 29
characters wide. The width of the separator column is constant; it is one
character wide. The width of the body area depends on the data placed there,
up to a maximum of 64 characters.

The dae_margin_puts and dae_margin_printf routines can be used to define the
width of the margin and to place data in the margin. If too many characters are
specified to be placed in the margin, the data wraps to the margin of the next
line of output. Once the dae_margin_puts or dae_margin_printf routine changes
the margin width, the change is in effect until another call to one of these
routines changes the margin width again.

The separator column is always blank.

The dae_status_puts and dae_status_printf routines can be used to put data in
the body area. If too many characters are specified to be placed in the body
area, the data wraps to the body area of the next line of output.

The output generated by dae_status_printf is not necessarily sent immediately
to the process making the subsystem long status request. The subsystem long
status output is buffered within the daemon support routines. Any buffered
output will be sent to the process making the subsystem long status request
when the routine supporting the SRC subsystem long status request returns.

If a single call to this routine generates over 4095 bytes of output, an internal
buffer will overflow. The effects of such an overflow are unpredictable.

EXAMPLES

Assume the routine designated to handle the subsystem long status request for
subsystem des.ex.sock is report_status, as shown here.

static void report_status(void)
{

dae_status_short();

dae_status_printf(″\nI′ ve seen %d client connections.\n″ ,
client_count);

dae_status_puts(tracing_on ? ″Tracing is on.\n″
: ″Tracing is off.\n″ ) ;

return;
}

The output generated by a subsystem long status request made for des.ex.sock
might appear as follows:

# lssrc -ls des.ex.sock
Subsystem Group PID Status
 des.ex.sock des.ex 8418 active

 I′ ve seen 0 client connections.
 Tracing is off.
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The line of output stating, “I′ ve seen 0 client connections.” was created by the
call to dae_status_printf in report_status. The blank before the output created
by dae_status_printf is the separator column. Since neither dae_margin_puts nor
dae_margin_printf was called, the margin is 0 bytes wide.

RETURN VALUES

If the routine is successful, it returns the string length of the output string
generated from the format string and the arguments. If the routine is not
successful, it returns -1. The error condition detectable by the routine follows:

• The daemon is not currently processing a subsystem long status request.

A successful return code is not a guarantee that the output is received by the
process making the subsystem long status request.

The routine does not change errno.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328
A.11, “dae_status_short(3)” on page 351
A.12, “dae_status_puts(3)” on page 354
A.14, “dae_margin_puts(3)” on page 360
A.15, “dae_margin_printf(3)” on page 364
A.16, “dae_inform_puts(3)” on page 368
A.17, “dae_inform_printf(3)” on page 371
A.18, “dae_error_puts(3)” on page 374
A.19, “dae_error_printf(3)” on page 377
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A.14 dae_margin_puts(3)

NAME

dae_margin_puts - Provides an interface similar to puts for specifying the
subsystem long status margin output.

SYNOPSIS

#include <dae.h>

int dae_margin_puts(int dae_width, const char *dae_str);

PARAMETERS

dae_width Specifies the new width of the margin, in characters. If the value is
negative, the margin width is not changed. If the value is not negative, the
margin width is changed to the specified value. The maximum width of the
margin is 29 characters. A value larger than this maximum is silently
adjusted to the maximum.

dae_str Pointer to a null terminated string that is placed in the margin of the
subsystem long status output.

DESCRIPTION

When the dae_margin_puts routine is called from a routine supporting the SRC
subsystem long status request, the width of the margin is adjusted as specified
by the dae_width parameter, and the string pointed to by the dae_str parameter is
placed in the margin of the subsystem long status output. If no data has been
written to the body area of the current line, the string specified by dae_str is
placed in the margin of the current line. If data has been written to the body
area of the current line, the next line becomes the current line, and the string
specified by dae_str is placed in the margin of the new current line.

The dae_margin_puts routine behaves like puts as much as possible. Known
differences between puts and dae_margin_puts are:

• The puts routine displays its output on the standard output of the calling
process. The output of dae_margin_puts is sent to the process making the
SRC subsystem long status request. That process usually displays the
output on its standard output.

• The puts routine always appends a newline character at the end of the
string. The dae_margin_puts routine does not do so. In this respect, the
dae_margin_puts routine is similar to fputs.

• The dae_margin_puts routine cannot place more characters in the margin of a
line than are allowed by the margin width. Therefore, the routine may insert
line breaks where they are not specified in the string.

• The dae_margin_puts routine cannot process the literal % character correctly.
If a literal % character is specified for output, the dae_margin_puts routine
will fail.

The dae_margin_puts routine may be called from the time dae_SRC_req calls a
routine to process the SRC subsystem long status request until the routine called
by dae_SRC_req returns. The routine dae_SRC_req calls to process the SRC
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subsystem long status request is specified as the dae_long_status member of the
dae_SRC_rtns parameter in a call to the dae_init_SRC_msq routine or the
dae_init_SRC_sock routine.

NOTES

The SRC imposes a structure on the output of the lssrc command that limits the
format of subsystem long status output. A goal of the daemon support routines
that support the generation of subsystem long status output is to generalize the
format as much as possible. This is accomplished using the model of the
subsystem long status output format described in the next paragraph.

Each line of the subsystem long status output is viewed as being composed of a
margin, a separator column, and a body area. The width of the margin can be
changed dynamically; by default, it is zero characters wide, but it can be up to 29
characters wide. The width of the separator column is constant; it is one
character wide. The width of the body area depends on the data placed there,
up to a maximum of 64 characters.

The dae_margin_puts and dae_margin_printf routines can be used to define the
width of the margin and to place data in the margin. If too many characters are
specified to be placed in the margin, the data wraps to the margin of the next
line of output. Once the dae_margin_puts or dae_margin_printf routine changes
the margin width, the change is in effect until another call to one of these
routines changes the margin width again.

The separator column is always blank.

The dae_status_puts and dae_status_printf routines can be used to put data in
the body area. If too many characters are specified to be placed in the body
area, the data wraps to the body area of the next line of output.

The output generated by dae_margin_puts is not necessarily sent immediately to
the process making the subsystem long status request. The subsystem long
status output is buffered within the daemon support routines. Any buffered
output will be sent to the process making the subsystem long status request
when the routine supporting the SRC subsystem long status request returns.

EXAMPLES

Assume the routine designated to handle the subsystem long status request for
subsystem des.ex.sock is get_status, as shown here:

#if defined(_BSD)
#define GETPGRP() getpgrp((pid_t)0)

#else
#define GETPGRP() getpgrp()

#endif

void get_status(void)
{

char **envp;

dae_margin_puts(strlen(″Subsystem:″ ) , ″Subsystem:″ ) ;
dae_status_puts(″des.ex.sock\n\n″ ) ;
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dae_margin_puts(-1, ″PID:″ ) ;
dae_status_printf(″%d\n″ , getpid());

dae_margin_puts(-1, ″PPID:″ ) ;
dae_status_printf(″%d\n″ , getppid());

dae_margin_puts(-1, ″PGID:″ ) ;
dae_status_printf(″%d\n″ , GETPGRP());

dae_margin_puts(-1, ″SID:″ ) ;
dae_status_printf(″%d\n″ , getsid(getpid()));

dae_margin_puts(0, ″\n″ ) ;

envp = environ;

for (envp = environ; (*envp != NULL); envp++) {
dae_status_printf(″%s\n″ ,  *envp);

}

return;
}

The output generated by a subsystem long status request made for des.ex.sock
might appear as follows:

Subsystem: des.ex.sock

PID: 6582
PPID: 3934
PGID: 6582
SID: 6582

TERM=dumb
AUTHSTATE=compat
SHELL=/bin/ksh
HOME=/
USER=root
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin
TZ=EST5EDT
LANG=C
LOCPATH=/usr/lib/nls/loc
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat
LC__FASTMSG=true
ODMDIR=/etc/objrepos
LOGNAME=root
LOGIN=root
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RETURN VALUES

If the routine is successful, it returns the string length of the string pointed to by
the dae_str parameter. If the routine is not successful, it returns EOF. The error
conditions detectable by the routine follow:

• The daemon is not currently processing a subsystem long status request.
• A literal % character was specified for output.
• The current margin width is 0 characters, and a character other than newline

was specified for output.

A successful return code is not a guarantee that the output is received by the
process making the subsystem long status request.

The routine does not change errno.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328
A.11, “dae_status_short(3)” on page 351
A.12, “dae_status_puts(3)” on page 354
A.13, “dae_status_printf(3)” on page 357
A.15, “dae_margin_printf(3)” on page 364
A.16, “dae_inform_puts(3)” on page 368
A.17, “dae_inform_printf(3)” on page 371
A.18, “dae_error_puts(3)” on page 374
A.19, “dae_error_printf(3)” on page 377
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A.15 dae_margin_printf(3)

NAME

dae_margin_printf - Provides an interface similar to printf for specifying the
subsystem long status margin output.

SYNOPSIS

#include <dae.h>

int dae_margin_printf(int dae_width, const char *dae_fmt, ...);

PARAMETERS

dae_width Specifies the new width of the margin, in characters. If the value is
negative, the margin width is not changed. If the value is not negative, the
margin width is changed to the specified value. The maximum width of the
margin is 29 characters. A value larger than this maximum is silently
adjusted to the maximum.

dae_fmt Pointer to a null terminated string that specifies the format of data to be
placed in the margin of the subsystem long status output. See the printf
man page for information about the format string.

... Arguments formatted under the control of the dae_fmt parameter. See the
printf man page for information about these arguments.

DESCRIPTION

When the dae_margin_printf routine is called from a routine supporting the SRC
subsystem long status request, the string pointed to by the dae_fmt parameter
and the arguments that follow are used to create an output string that is placed
in the margin of the subsystem long status output. If no data has been written to
the body area of the current line, the output string is placed in the margin of the
current line. If data has been written to the body area of the current line, the
next line becomes the current line, and the output string is placed in the margin
of the new current line.

The dae_margin_printf routine behaves like printf as much as possible. Known
differences between printf and dae_margin_printf are:

• The printf routine displays its output on the standard output of the calling
process. The output of dae_margin_printf is sent to the process making the
SRC subsystem long status request. That process usually displays the
output on its standard output.

• The dae_margin_printf routine cannot place more characters in the margin of
a line than are allowed by the margin width. Therefore, the routine may
insert line breaks where they are not specified in the string.

• The dae_margin_printf routine cannot process the literal % character
correctly. If a literal % character is specified for output, the
dae_margin_printf routine will fail.

The dae_margin_printf routine may be called from the time dae_SRC_req calls a
routine to process the SRC subsystem long status request until the routine called
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by dae_SRC_req returns. The routine dae_SRC_req calls to process the SRC
subsystem long status request is specified as the dae_long_status member of the
dae_SRC_rtns parameter in a call to the dae_init_SRC_msq routine or the
dae_init_SRC_sock routine.

NOTES

The SRC imposes a structure on the output of the lssrc command that limits the
format of subsystem long status output. A goal of the daemon support routines
that support the generation of subsystem long status output is to generalize the
format as much as possible. This is accomplished using the model of the
subsystem long status output format described in the next paragraph.

Each line of the subsystem long status output is viewed as being composed of a
margin, a separator column, and a body area. The width of the margin can be
changed dynamically; by default, it is zero characters wide, but it can be up to 29
characters wide. The width of the separator column is constant; it is one
character wide. The width of the body area depends on the data placed there,
up to a maximum of 64 characters.

The dae_margin_puts and dae_margin_printf routines can be used to define the
width of the margin and to place data in the margin. If too many characters are
specified to be placed in the margin, the data wraps to the margin of the next
line of output. Once the dae_margin_puts or dae_margin_printf routine changes
the margin width, the change is in effect until another call to one of these
routines changes the margin width again.

The separator column is always blank.

The dae_status_puts and dae_status_printf routines can be used to put data in
the body area. If too many characters are specified to be placed in the body
area, the data wraps to the body area of the next line of output.

The output generated by dae_margin_printf is not necessarily sent immediately
to the process making the subsystem long status request. The subsystem long
status output is buffered within the daemon support routines. Any buffered
output will be sent to the process making the subsystem long status request
when the routine supporting the SRC subsystem long status request returns.

If a single call to this routine generates over 4095 bytes of output, an internal
buffer will overflow. The effects of such an overflow are unpredictable.

EXAMPLES

Assume the routine designated to handle the subsystem long status request for
subsystem des.ex.sock is get_status, as shown here:

#if defined(_BSD)
#define GETPGRP() getpgrp((pid_t)0)

#else
#define GETPGRP() getpgrp()

#endif

void get_status(void)
{

const char *subsys_str = ″des.ex.sock″ ;
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const int subsys_len = strlen(subsys_str);
const char *PID_str = ″ PID:″ ;
const int PID_len = strlen(PID_str);
char **envp;

dae_margin_printf(subsys_len + PID_len, ″%s%s″ ,
subsys_str, PID_str);

dae_status_printf(″%d\n″ ,  getpid());

dae_margin_printf(-1, ″%*s″ ,  subsys_len + PID_len, ″PPID:″ ) ;
dae_status_printf(″%d\n″ ,  getppid());

dae_margin_printf(-1, ″%*s″ ,  subsys_len + PID_len, ″PGID:″ ) ;
dae_status_printf(″%d\n″ ,  GETPGRP());

dae_margin_printf(-1, ″%*s″ ,  subsys_len + PID_len, ″SID:″ ) ;
dae_status_printf(″%d\n″ ,  getsid(getpid()));

dae_margin_puts(0, ″\n″ ) ;

envp = environ;
for (envp = environ; (*envp != NULL); envp++) {

dae_status_printf(″%s\n″ ,  *envp);
}

return;
}

The output generated by a subsystem long status request made for des.ex.sock
might appear as follows:

des.ex.sock PID: 6582
PPID: 3934
PGID: 6582
SID: 6582

TERM=dumb
AUTHSTATE=compat
SHELL=/bin/ksh
HOME=/
USER=root
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin
TZ=EST5EDT
LANG=C
LOCPATH=/usr/lib/nls/loc
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat
LC__FASTMSG=true
ODMDIR=/etc/objrepos
LOGNAME=root
LOGIN=root
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RETURN VALUES

If the routine is successful, it returns the string length of the output string
generated from the format string and the arguments. If the routine is not
successful, it returns -1. The error conditions detectable by the routine follow:

• The daemon is not currently processing a subsystem long status request.
• A literal % character was specified for output.
• The current margin width is 0 characters, and a character other than newline

was specified for output.

A successful return code is not a guarantee that the output is received by the
process making the subsystem long status request.

The routine does not change errno.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328
A.11, “dae_status_short(3)” on page 351
A.12, “dae_status_puts(3)” on page 354
A.13, “dae_status_printf(3)” on page 357
A.14, “dae_margin_puts(3)” on page 360
A.16, “dae_inform_puts(3)” on page 368
A.17, “dae_inform_printf(3)” on page 371
A.18, “dae_error_puts(3)” on page 374
A.19, “dae_error_printf(3)” on page 377
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A.16 dae_inform_puts(3)

NAME

dae_inform_puts - Provides an interface similar to puts for displaying information
messages while processing SRC requests.

SYNOPSIS

#include <dae.h>

int dae_inform_puts(const char *dae_str);

PARAMETERS

dae_str Pointer to a null terminated string that is sent to the standard output of the
process making the SRC request.

DESCRIPTION

When the dae_inform_puts routine is called from a routine supporting the SRC
subsystem trace on, trace off, refresh, or long status request, or from a routine
supporting subsystem-defined SRC requests, the string pointed to by the dae_str
parameter is sent to the standard output of the process making the SRC request.

The dae_inform_puts routine behaves like puts as much as possible. Known
differences between puts and dae_inform_puts are:

• The puts routine displays its output on the standard output of the calling
process. The output of dae_inform_puts is sent to the standard output of the
process making the SRC request.

• The puts routine always appends a newline character at the end of the
string. The dae_inform_puts routine appends a newline character at the end
of the string if a newline character does not end the string, and the string is
the last informative message sent by the routine handling the SRC request.

• The dae_inform_puts routine cannot place more than 141 characters on a line.
So, the routine may insert line breaks where they are not specified in the
string.

The dae_inform_puts routine may be called from the time dae_SRC_req calls a
routine to process the SRC subsystem trace on request, the SRC subsystem
trace off request, the SRC subsystem refresh request, the SRC subsystem long
status request, or a subsystem-defined SRC request until the routine called by
dae_SRC_req returns. The routines dae_SRC_req would call to process the
previously mentioned requests would have been specified by the
dae_trace_begin, dae_trace_end, dae_refresh, dae_long_status, and dae_other_req
members of the dae_SRC_rtns parameter in a call to the dae_init_SRC_msq or
dae_init_SRC_sock routine.

NOTES

When the calling routine is supporting the subsystem long status request, the
output generated by dae_inform_puts and dae_inform_printf may be intermixed
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with the output generated by dae_status_puts, dae_status_printf,
dae_margin_puts, and dae_margin_printf.

The output generated by dae_inform_puts is not necessarily sent immediately to
the process making the SRC request. The information messages are buffered
within the daemon support routines. Any buffered output will be sent to the
process making the SRC request when the routine supporting the request
returns.

The dae_inform_puts routine could support lines up to 255 characters in length, if
the traceson, tracesoff, and refresh commands were changed to accept a full
SRC reply packet.

EXAMPLES

Assume the routine designated to handle the subsystem trace on request for
subsystem des.ex.sock is start_trace, as shown here:

void start_trace(int longtrace)
{

if (longtrace) {
current_tracing = 2;
dae_inform_puts(″Long″ ) ;

} else {
current_tracing = 1;
dae_inform_puts(″Short″ ) ;

}

dae_inform_puts(″ tracing for dae.ex.sock logged to ″ ) ;
dae_inform_puts(trace_path);
dae_inform_puts(″ .\n″ ) ;

return;
}

The start_trace routine assumes two global variables, current_tracing and
trace_path. The trace_path variable is assumed to contain the path name of a
file to which trace records are written. The current_tracing variable is assumed
to take one of three possible values: 0 indicates tracing is off, 1 indicates short
tracing is on, and 2 indicates long tracing is on.

The output generated by a subsystem trace on request made for des.ex.sock
might appear as follows:

# traceson -ls des.ex.sock
Long tracing for des.ex.sock logged to /tmp/des.ex.sock.8804.
0513-091 The request to turn on tracing was completed successfully.

The first line of output is created by the calls to dae_inform_puts in start_trace.
The second line of output is displayed by the traceson command when it is
successful.
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RETURN VALUES

If the routine is successful, it returns the string length of the string pointed to by
the dae_str parameter. If the routine is not successful, it returns EOF. The error
condition detectable by the routine follows:

• The daemon is not currently processing a subsystem trace on, trace off,
refresh, or long status request, or a subsystem-defined request.

A successful return code is not a guarantee that the output is received by the
process making the SRC request.

The routine does not change errno.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328
A.11, “dae_status_short(3)” on page 351
A.12, “dae_status_puts(3)” on page 354
A.13, “dae_status_printf(3)” on page 357
A.14, “dae_margin_puts(3)” on page 360
A.15, “dae_margin_printf(3)” on page 364
A.17, “dae_inform_printf(3)” on page 371
A.18, “dae_error_puts(3)” on page 374
A.19, “dae_error_printf(3)” on page 377
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A.17 dae_inform_printf(3)

NAME

dae_inform_printf - Provides an interface similar to printf for displaying
information messages while processing SRC requests.

SYNOPSIS

#include <dae.h>

int dae_inform_printf(const char *dae_fmt, ...);

PARAMETERS

dae_fmt Pointer to a null terminated string that specifies the format of data to be
sent to the standard output of the process making the SRC request. See
the printf man page in AIX Version 4.1: Technical Reference for information
about the format string.

... Arguments formatted under the control of the dae_fmt parameter. See the
printf man page in AIX Version 4.1: Technical Reference for information
about these arguments.

DESCRIPTION

When the dae_inform_printf routine is called from a routine supporting the SRC
subsystem trace on, trace off, refresh, or long status request, or from a routine
supporting subsystem-defined SRC requests, the string pointed to by the dae_fmt
parameter and the arguments that follow are used to create an output string that
is sent to the standard output of the process making the SRC request.

The dae_inform_printf routine behaves like printf as much as possible. Known
differences between printf and dae_inform_printf are:

• The printf routine displays its output on the standard output of the calling
process. The output of dae_inform_printf is sent to the standard output of
the process making the SRC request.

• The dae_inform_printf routine cannot place more than 141 characters on a
line. Therefore, the routine may insert line breaks where they are not
specified in the output string.

The dae_inform_printf routine may be called from the time dae_SRC_req calls a
routine to process the SRC subsystem trace on request, the SRC subsystem
trace off request, the SRC subsystem refresh request, the SRC subsystem long
status request, or a subsystem-defined SRC request until the routine called by
dae_SRC_req returns. The routines that dae_SRC_req would call to process the
previously mentioned requests would have been specified by the
dae_trace_begin, dae_trace_end, dae_refresh, dae_long_status, and dae_other_req
members of the dae_SRC_rtns parameter in a call to the dae_init_SRC_msq or
dae_init_SRC_sock routine.
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NOTES

When the calling routine is supporting the subsystem long status request, the
output generated by dae_inform_puts and dae_inform_printf may be intermixed
with the output generated by dae_status_puts, dae_status_printf,
dae_margin_puts, and dae_margin_printf.

The output generated by dae_inform_printf is not necessarily sent immediately
to the process making the SRC request. The information messages are buffered
within the daemon support routines. Any buffered output will be sent to the
process making the SRC request when the routine supporting the request
returns.

The dae_inform_printf routine could support lines up to 255 characters in length,
if the traceson, tracesoff, and refresh commands were changed to accept a full
SRC reply packet.

If a single call to this routine generates over 4095 bytes of output, an internal
buffer will overflow. The effects of such an overflow are unpredictable.

EXAMPLES

Assume the routine designated to handle the subsystem trace on request for
subsystem des.ex.sock is start_trace, as shown here:

void start_trace(int longtrace)
{

if (longtrace) {
current_tracing = 2;

} else {
current_tracing = 1;

}

dae_inform_printf(″%s tracing for des.ex.sock logged to %s.\n″ ,
(longtrace) ? ″Long″ : ″Short″ ,  trace_path);

return;
}

The start_trace routine assumes two global variables, current_tracing and
trace_path. The trace_path variable is assumed to contain the path name of a
file to which trace records are written. The current_tracing variable is assumed
to take one of three possible values: 0 indicates tracing is off, 1 indicates short
tracing is on, and 2 indicates long tracing is on.

The output generated by a subsystem trace on request made for des.ex.sock
might appear as follows:

# traceson -ls des.ex.sock
Long tracing for des.ex.sock logged to /tmp/des.ex.sock.8804.
0513-091 The request to turn on tracing was completed successfully.

The first line of output is created by the call to dae_inform_printf in start_trace.
The second line of output is displayed by the traceson command when it is
successful.
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RETURN VALUES

If the routine is successful, it returns the string length of the output string
generated from the format string and the arguments. If the routine is not
successful, it returns -1. The error condition detectable by the routine follows:

• The daemon is not currently processing a subsystem trace on, trace off,
refresh, or long status request, or a subsystem-defined request.

A successful return code is not a guarantee that the output is received by the
process making the SRC request.

The routine does not change errno.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328
A.11, “dae_status_short(3)” on page 351
A.12, “dae_status_puts(3)” on page 354
A.13, “dae_status_printf(3)” on page 357
A.14, “dae_margin_puts(3)” on page 360
A.15, “dae_margin_printf(3)” on page 364
A.16, “dae_inform_puts(3)” on page 368
A.18, “dae_error_puts(3)” on page 374
A.19, “dae_error_printf(3)” on page 377
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A.18 dae_error_puts(3)

NAME

dae_error_puts - Provides an interface similar to puts for displaying error
messages while processing SRC requests.

SYNOPSIS

#include <dae.h>

int dae_error_puts(const char *dae_str);

PARAMETERS

dae_str Pointer to a null terminated string that is sent as an error message to the
process making the SRC request.

DESCRIPTION

When the dae_error_puts routine is called from a routine supporting the SRC
subsystem trace on, trace off, refresh, or long status request, or from a routine
supporting subsystem-defined SRC requests, the string pointed to by the dae_str
parameter is sent as an error message to the process making the SRC request.
If the process making the SRC request is running the traceson, tracesoff,
refresh, or lssrc command, or a command generated as described in
Chapter 12, “New SRC Program Support” on page 303, it will display the error
message on its standard output and exit with a bad return code.

The dae_error_puts routine behaves like puts as much as possible. Known
differences between puts and dae_error_puts are:

• The puts routine displays its output on the standard output of the calling
process. The output of dae_error_puts is sent to the process making the SRC
request. That process will likely display the error message on its standard
output.

• The puts routine always appends a newline character at the end of the
string. The dae_error_puts routine appends a newline character at the end of
the string if a newline character does not end the string, and the string is the
last error message sent by the routine handling the SRC request.

• The dae_error_puts routine cannot be used to send more than 140 characters
to the process making the SRC request. Excess characters will be truncated.

The dae_error_puts routine may be called from the time dae_SRC_req calls a
routine to process the SRC subsystem trace on request, the SRC subsystem
trace off request, the SRC subsystem refresh request, the SRC subsystem long
status request, or a subsystem-defined SRC request until the routine called by
dae_SRC_req returns. The routines dae_SRC_req would call to process the
previously mentioned requests would have been specified by the
dae_trace_begin, dae_trace_end, dae_refresh, dae_long_status, and dae_other_req
members of the dae_SRC_rtns parameter in a call to the dae_init_SRC_msq or
dae_init_SRC_sock routine.
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NOTES

The output generated by dae_error_puts is not necessarily sent immediately to
the process making the SRC request. The error messages are buffered within
the daemon support routines. Any buffered output will be sent to the process
making the SRC request when the routine supporting the request returns.

The dae_error_puts routine could support lines up to 254 characters in length, if
the traceson, tracesoff, and refresh commands were changed to accept a full
SRC reply packet.

The traceson command, the tracesoff command, the refresh command, and
commands generated as described in Chapter 12, “New SRC Program Support”
on page 303, do not exit with a bad return code when they are invoked with the
-g flag, even when this routine is used to display an error message.

EXAMPLES

Assume the routine designated to handle the subsystem trace on request for
subsystem des.ex.sock is start_trace, as shown here:

void start_trace(int longtrace)
{

int debug_on = 1;

if (setsockopt(acpt_sockd, SOL_SOCKET, SO_DEBUG,
(char *) &debug_on, sizeof debug_on) == -1) {

/* Log something */

dae_error_puts(″Subsystem des.ex.sock: ″
″setsockopt() error: \″″ ) ;

dae_error_puts(strerror(errno));
dae_error_puts(″\″ .\n″ ) ;

}

return;
}

The start_trace routine will set the SO_DEBUG option for one of the daemon′s
sockets when receiving the subsystem trace on request. If an error is returned
by setsockopt, start_trace will call dae_error_puts to return an error message to
the process that sent the request. If no error is reported by setsockopt,
start_trace will not call dae_error_puts or dae_error_printf; therefore, the
process which sent the request will get an indication of success.

The output generated by a subsystem trace on request made for des.ex.sock
might appear as follows if the request fails because the variable acpt_sockd does
not represent a valid file descriptor:

# traceson -ls des.ex.sock
Subsystem des.ex.sock: setsockopt() error: ″Bad file number″ .
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RETURN VALUES

If the routine is successful, it returns the string length of the string pointed to by
the dae_str parameter. If the routine is not successful, it returns EOF. The error
condition detectable by the routine follows:

• The daemon is not currently processing a subsystem trace on, trace off,
refresh, or long status request, or a subsystem-defined request.

A successful return code is not a guarantee that the output is received by the
process making the SRC request.

The routine does not change errno.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328
A.11, “dae_status_short(3)” on page 351
A.12, “dae_status_puts(3)” on page 354
A.13, “dae_status_printf(3)” on page 357
A.14, “dae_margin_puts(3)” on page 360
A.15, “dae_margin_printf(3)” on page 364
A.16, “dae_inform_puts(3)” on page 368
A.17, “dae_inform_printf(3)” on page 371
A.19, “dae_error_printf(3)” on page 377
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A.19 dae_error_printf(3)

NAME

dae_error_printf - Provides an interface similar to printf for displaying error
messages while processing SRC requests.

SYNOPSIS

#include <dae.h>

int dae_error_printf(const char *dae_fmt, ...);

PARAMETERS

dae_fmt Pointer to a null terminated string that specifies the format of data to be
sent as an error message to the process making the SRC request. See the
printf man page for information about the format string.

... Arguments formatted under the control of the dae_fmt parameter. See the
printf man page for information about these arguments.

DESCRIPTION

When the dae_error_printf routine is called from a routine supporting the SRC
subsystem trace on, trace off, refresh, or long status request, or from a routine
supporting subsystem-defined SRC requests, the string pointed to by the dae_fmt
parameter and the arguments that follow are used to create an output string that
is sent to the process making the SRC request as an error message. If the
process making the SRC request is running the traceson, tracesoff, refresh, or
lssrc command, or a command generated as described in Chapter 12, “New
SRC Program Support” on page 303, it will display the error message on its
standard output and exit with a bad return code.

The dae_error_printf routine behaves like printf as much as possible. Known
differences between printf and dae_error_printf are:

• The printf routine displays its output on the standard output of the calling
process. The output of dae_error_printf is sent to the process making the
SRC request. That process will likely display the error message on its
standard output.

• The dae_error_printf routine cannot be used to send more than 140
characters to the process making the SRC request. Excess characters will
be truncated.

The dae_error_printf routine may be called from the time dae_SRC_req calls a
routine to process the SRC subsystem trace on request, the SRC subsystem
trace off request, the SRC subsystem refresh request, the SRC subsystem long
status request, or a subsystem-defined SRC request, until the routine called by
dae_SRC_req returns. The routines that dae_SRC_req would call to process the
previously mentioned requests would have been specified by the
dae_trace_begin, dae_trace_end, dae_refresh, dae_long_status, and dae_other_req
members of the dae_SRC_rtns parameter in a call to the dae_init_SRC_msq or
dae_init_SRC_sock routine.
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NOTES

The output generated by dae_error_printf is not necessarily sent immediately to
the process making the SRC request. The error messages are buffered within
the daemon support routines. Any buffered output will be sent to the process
making the SRC request when the routine supporting the request returns.

The dae_error_printf routine could support lines up to 255 characters in length, if
the traceson, tracesoff, and refresh commands were changed to accept a full
SRC reply packet.

The traceson command, the tracesoff command, the refresh command, and
commands generated as described in Chapter 12, “New SRC Program Support”
on page 303, do not exit with a bad return code when they are invoked with the
-g flag, even when this routine is used to display an error message.

If a single call to this routine generates over 4095 bytes of output, an internal
buffer will overflow. The effects of such an overflow are unpredictable.

EXAMPLES

Assume the routine designated to handle the subsystem trace on request for
subsystem des.ex.sock is start_trace, as shown here:

void start_trace(int longtrace)
{

int debug_on = 1;

if (setsockopt(acpt_sockd, SOL_SOCKET, SO_DEBUG,
(char *) &debug_on, sizeof debug_on) == -1) {

/* Log something */

dae_error_printf(″Subsystem des.ex.sock: ″
″setsockopt() error, \″%s\″ .\n″ ,
strerror(errno));

}

return;
}

The start_trace routine will set the SO_DEBUG option for one of the daemon′s
sockets when receiving the subsystem trace on request. If an error is returned
by setsockopt, start_trace will call dae_error_printf to return an error message
to the process that sent the request. If no error is reported by setsockopt,
start_trace will not call dae_error_puts or dae_error_printf; therefore, the
process which sent the request will get an indication of success.

The output generated by a subsystem trace on request made for des.ex.sock
might appear as follows if the request failed because the variable acpt_sockd
does not represent a valid file descriptor.

# traceson -ls des.ex.sock
Subsystem des.ex.sock: setsockopt() error: ″Bad file number″ .
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RETURN VALUES

If the routine is successful, it returns the string length of the output string
generated from the format string and the arguments. If the routine is not
successful, it returns -1. The error condition detectable by the routine follows:

• The daemon is not currently processing a subsystem trace on, trace off,
refresh, or long status request, or a subsystem-defined request.

A successful return code is not a guarantee that the output is received by the
process making the SRC request.

The routine does not change errno.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page sections in this appendix are related:

A.1, “dae_init(3)” on page 316
A.3, “dae_init_SRC_msq(3)” on page 325
A.4, “dae_init_SRC_sock(3)” on page 328
A.11, “dae_status_short(3)” on page 351
A.12, “dae_status_puts(3)” on page 354
A.13, “dae_status_printf(3)” on page 357
A.14, “dae_margin_puts(3)” on page 360
A.15, “dae_margin_printf(3)” on page 364
A.16, “dae_inform_puts(3)” on page 368
A.17, “dae_inform_printf(3)” on page 371
A.18, “dae_error_puts(3)” on page 374
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A.20 dae_process_is_the_daemon(3)

NAME

dae_process_is_the_daemon - Indicates if the calling process is the process that
has successfully called dae_init to initialize itself as a daemon.

SYNOPSIS

#include <dae.h>

int dae_process_is_the_daemon(void);

PARAMETERS

This routine takes no parameters.

DESCRIPTION

The dae_process_is_the_daemon routine can be called by a process to see if it is
the process that has successfully called dae_init to initialize itself as a daemon.
The routine may be useful in signal handlers. If a daemon process creates a
child process, the child process inherits the signal handlers installed by the
daemon process. The signal handler may need to perform differently when run
in a child process of a daemon than in the daemon process itself.

RETURN VALUES

If the calling process has initialized itself by calling dae_init, the routine returns
1. Otherwise, it returns 0.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.

RELATED INFORMATION

The following man page section in this appendix is related:

A.1, “dae_init(3)” on page 316
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A.21 dae_fopen(3)

NAME

dae_fopen - Provides an interface similar to fopen, and prevents the daemon
from acquiring a controlling terminal as a result of calling open.

SYNOPSIS

#include <dae.h>

FILE *dae_fopen(const char *dae_filename, const char *dae_mode);

PARAMETERS

dae_filename The path name of the file to be opened.

dae_mode This parameter controls whether the file is opened for reading, writing, or
both. See the fopen man page in AIX Version 4.1: Technical Reference for
details.

DESCRIPTION

The dae_fopen routine is designed to perform the same function as the standard
I/O routine fopen. The only difference is the calling process will not acquire a
controlling terminal as a result of opening a terminal device through dae_fopen.
If a process that is a session leader without a controlling terminal calls fopen to
open a terminal device that is not already a controlling terminal for a session,
the process will obtain the terminal device as its controlling terminal. This is
usually undesirable for a daemon process; thus, the dae_fopen routine is
provided as a safe alternative to fopen.

RETURN VALUES

If an error occurs, NULL is returned. Otherwise, a pointer to an open stream is
returned.

LOCATION

This routine resides in the libdae_bsd.a and libdae.a libraries.

For information about determining with which library a program should be linked,
and other libraries with which the program must be linked, refer to 10.3, “Linking
with the Daemon Support Routines” on page 286.
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A.22 DAE_M_STOP(3)

NAME

DAE_M_STOP - A macro that allows a daemon to be debugged from a certain point.

SYNOPSIS

#include <dae.h>

PARAMETERS

This macro takes no parameters.

DESCRIPTION

The DAE_M_STOP macro will stop the current process if the environment contains a
variable DAE_DEBUG with a value of stop. The process will continue to run when
sent a SIGCONT signal. The macro is intended to be placed at the very beginning
of the main routine of a daemon. It allows a daemon to be stopped as soon as
its execution begins, if debugging is required. After the process is started with a
command like:

startsrc -s subsys -e ″DAE_DEBUG=stop″

a debugger can be attached to the process, and execution of the process will
start just after the macro invocation. The dbx debugger can be attached to the
daemon with the command:

dbx -a <PID of daemon>.

If dbx is to be terminated without terminating the daemon, use the dbx detach
command.

EXAMPLES

#include <unistd.h>
#include <dae.h>

int main(int argc, char **argv)
{

/* Process stops here if DAE_DEBUG=stop is in environment */
DAE_M_STOP;

/* Do whatever main is supposed to do ... */

return 0;
}

RETURN VALUES

No value is returned.
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LOCATION

This macro is defined in the dae.h header file.
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Appendix B. SRC Notification Support Programs man Pages

This appendix provides detailed program instructions for the use of the SRC
Notification Support Programs. The level of detail is consistent with that
commonly provided in UNIX systems man pages. The appendix provides
reference for the user of the programs, or for a daemon writer interested in
writing an interface to the programs.

  Copyright IBM Corp. 1996 385



B.1 dae_notify(1)

NAME

dae_notify - Generic SRC notification method.

SYNOPSIS

dae_notify [-s syspath] [-u usrpath] subsys_name [group_name]

ARGUMENTS

-s syspath The syspath argument specifies the directory to be searched for a
subsystem-supplied notification program for the subsystem identified by the
subsys_name argument and for the group identified by the group_name
argument. If the -s argument is not specified, the directory in which you
installed dae_notify is searched.

-u usrpath The usrpath argument specifies the directory to be searched for user exit
programs for the subsystem identified by the subsys_name argument and for
the group identified by the group_name argument. If the -u argument is not
specified, the same directory is searched for user exit programs as is
searched for the subsystem-supplied notification program.

subsys_name This argument specifies the name of the subsystem that has failed. This
argument is provided automatically by the SRC.

group_name This argument specifies the name of the group to which the failed
subsystem belongs. This argument is provided automatically by the SRC.
If the subsystem is not defined to be a member of a group, this argument is
not provided.

DESCRIPTION

The dae_notify program is designed as a generic SRC notification method. In
order for a subsystem to use this generic SRC notification method, an object
specifying dae_notify as the notification method must be defined for the
subsystem, or the group to which the subsystem belongs, in the SRCnotify object
class. The notification method field of the object placed in the SRCnotify object
class should include the -s and -u flags, and their arguments, if needed. The
subsys_name and group_name arguments should not be included in the notification
method field of the object placed in the SRCnotify object class. These arguments
are supplied by the srcmstr daemon when the notification method is invoked.

When the dae_notify program is invoked, it takes the following steps:

 1. It determines the directory that wil l be searched for subsystem-supplied
notification programs. If the -s flag was specified in the notification method
field of the SRCnotify object, the directory to search is specified by the -s
argument, syspath. Otherwise, the directory to search defaults to the one in
which dae_notify is installed.

 2. It determines the directory that wil l be searched for user exit programs. If
the -u flag was specified in the notification method field of the SRCnotify
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object, the directory to search is specified by the -u argument, usrpath. If
the -u flag was not specified, but the -s flag was specified in the notification
method field of the SRCnotify object, the directory to search is specified by
the -s argument, syspath. Otherwise, the directory to search defaults to the
one in which dae_notify is installed.

 3. It looks for an entry in the AIX error log that describes the abnormal
termination of the failing subsystem. Included in this entry is the exit status
of the subsystem. The program obtains the sequence number of the found
AIX error log entry, and the exit status of the subsystem.

 4. It looks for a “stage 1” user exit program associated with the failing
subsystem, or the group to which the failing subsystem belongs. The
directory to be searched was determined in Step 2. First, the program looks
in the directory for an executable file named <subsys_name>.userexit1. If this
file is found, it is executed, and dae_notify proceeds to the next step. If the
file is not found, and the group_name argument was provided, the program
looks for an executable file named <group_name>.userexit1. If this file is
found, it is executed.

 5. It looks for a subsystem-supplied notification program associated with the
failing subsystem, or the group to which the failing subsystem belongs. The
directory to be searched was determined in Step 1. First, the program looks
in the directory for an executable file named <subsys_name>.sysaction. If this
file is found, it is executed, and dae_notify proceeds to the next step. If the
file is not found, and the group_name argument was provided, the program
looks for an executable file named <group_name>.sysaction. If this file is
found, it is executed.

 6. It looks for a “stage 2” user exit program associated with the failing
subsystem, or the group to which the failing subsystem belongs. The
directory to be searched was determined in Step 2. First, the program looks
in the directory for an executable file named <subsys_name>.userexit2. If this
file is found, it is executed, and dae_notify proceeds to the next step. If the
file is not found, and the group_name argument was provided, the program
looks for an executable file named <group_name>.userexit2. If this file is
found, it is executed.

 7. It exits.

The arguments passed to the two user exit programs and the
subsystem-supplied notification program are identical. These programs are
supplied with the following arguments:

subsys_name The name of the subsystem that has failed.

group_name The name of the group to which the failed subsystem belongs. If the
subsystem is not defined to be a member of a group, this argument is a
null string.

log_seqno The sequence number of the AIX error log entry which describes the
abnormal termination of the subsystem. This argument can be used when
executing dae_msg or errpt. If the AIX error log entry could not be found,
this argument is a null string.

subsys_status The exit status of the failing subsystem. This argument can be used when
executing dae_msg or dae_status. If the AIX error log entry describing the
abnormal termination of the subsystem could not be found, this argument
is a null string.
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notify_rc The current value of the notification method return value. This is initialized
to 0 when the dae_notify notification method is started. The values
returned by the user exit programs and the subsystem-supplied notification
program update this value. When dae_notify exits, the value of the
notification method return value is used as the exit value.

If a user exit program or the subsystem-supplied notification program does
not detect any errors, it should exit with the value supplied by the
notify_rc argument. If an error is detected, it can exit with a different
value.

If a subsystem-supplied notification program′s behavior will depend on the
value of the notify_rc argument, the user documentation should describe
how the behavior depends on the value. A system administrator would use
this documentation when coding the “stage 1” user exit program. The exit
value from the “stage 1” user exit program can then be used to influence
the behavior of the subsystem-supplied notification program.

If a subsystem-supplied notification program may terminate with an exit
value other than the value received through notify_rc, the user
documentation should document the possible exit values. A system
administrator would use this documentation when coding the “stage 2”
user exit program. The value of the notify_rc argument received by the
“stage 2” user exit program can then be used to influence its behavior.

It is assumed that the user exit programs will typically be used to communicate
the failure of the subsystem to someone. A program is provided, dae_msg, that
may be called from the user exit programs. The dae_msg program may be given
as arguments the name of the failing subsystem, the name of the group to which
the failing subsystem belongs, the sequence number of the AIX error log entry
describing the abnormal termination of the failing subsystem, and the exit status
of the failing subsystem. It can generate a short or long message describing
why the subsystem terminated. Whether a short or long message is generated
is determined by the flags specified when dae_msg is executed. The short
message is a textual interpretation of the subsystem exit status. The long
message includes the short message, and the text from the AIX error log.

EXAMPLES

Refer to 11.2, “Examples of Using the SRC Notification Support Programs” on
page 296.

EXIT STATUS

 0 - Ran to completion successfully.

>0 - An error occurred.

LOCATION

Refer to 11.3, “Building and Shipping the SRC Notification Support Programs” on
page 299 for information about the install directory of the SRC notification
support programs.
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RELATED INFORMATION

The following man page sections in this appendix are related:

B.2, “dae_msg(1)” on page 390
B.3, “dae_status(1)” on page 392
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B.2 dae_msg(1)

NAME

dae_msg - Display a short or long message describing why the subsystem
terminated.

SYNOPSIS

dae_msg [-s|-l] subsys_name [group_name] [log_seqno subsys_status]

ARGUMENTS

-s Generate a short message. This is the default if neither -s nor -l is
specified.

-l Generate a long message.

subsys_name The name of the subsystem that has failed.

group_name The name of the group to which the failed subsystem belongs. This
argument is optional.

log_seqno The sequence number of the AIX error log entry which describes the
abnormal termination of the subsystem. If the AIX error log entry could not
be found, this argument should be a null string. If the AIX error log entry
has not been searched for yet, this argument should not be specified.

subsys_status The exit status of the failed subsystem. If the AIX error log entry
describing the abnormal termination of the subsystem could not be found,
this argument should be a null string. If the AIX error log entry has not
been searched for yet, this argument should not be specified.

DESCRIPTION

The dae_msg program generates a short or long message describing why a failed
subsystem terminated. Whether a short or long message is generated is
determined by the flags specified when dae_msg is executed. The short message
is a textual interpretation of the subsystem exit status. The long message
includes the short message and the text from the AIX error log.

The message generated is written to standard output. This can be piped to
another program to deliver the message to the appropriate individual.

NOTES

The examples in this man page assume that the SRC notification support
programs are installed in the /usr/lpp/ssp/bin directory. Refer to 11.3, “Building
and Shipping the SRC Notification Support Programs” on page 299 for
information about the install directory of the SRC notification support programs.
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EXAMPLES

The following command can be used in a user exit program called by dae_notify
to send a long message to the root user describing why the failed subsystem
terminated:

/usr/lpp/ssp/bin/dae_msg -l ″$1″ ″$2″ ″$3″ ″$4″ |  \
/usr/bin/mail -s ″$1 failed!″ root

If the dae_notify generic SRC notification program is not used as the notification
method for a subsystem, the subsystem′s notification method can send a long
message to the root user describing why the failed subsystem terminated with
the following command:

/usr/lpp/ssp/bin/dae_msg -l ″$@″ |  \
/usr/bin/mail -s ″$1 failed!″ root

Refer to 11.2, “Examples of Using the SRC Notification Support Programs” on
page 296.

EXIT STATUS

 0 - Ran to completion successfully.

>0 - An error occurred.

LOCATION

Refer to 11.3, “Building and Shipping the SRC Notification Support Programs” on
page 299 for information about the install directory of the SRC notification
support programs.

RELATED INFORMATION

The following man page sections in this appendix are related:

B.1, “dae_notify(1)” on page 386
B.3, “dae_status(1)” on page 392
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B.3 dae_status(1)

NAME

dae_status - Interpret a process status value.

SYNOPSIS

dae_status {-e|-k|-s|-c} subsys_status

ARGUMENTS

-e Determine if the subsystem exited; if it did, display the exit value.

-k Determine if the subsystem terminated due to the receipt of a signal; if it
did, display the number of the signal that caused the subsystem to
terminate.

-s Determine if the subsystem was stopped by the receipt of a signal; if it
was, display the number of the signal that stopped the subsystem.

-c Determine if the subsystem generated a core file.

subsys_status The status value of the failed subsystem, represented as a decimal,
hexadecimal, or octal number.

DESCRIPTION

The dae_status program is given the status value of a failed subsystem, and
interprets it. This program is used by the dae_msg program.

If the -e flag is specified, dae_status will determine if the subsystem called _exit
to terminate. If it did, dae_status returns a value of 0, and writes to standard
output the value specified by the subsystem on the call to _exit. This number is
printed as an unsigned decimal number. If the status value indicates the
subsystem did not call _exit to terminate, dae_status returns a value of 1.
Recall that when a C program calls exit or returns from the main routine, the
program calls _exit.

If the -k flag is specified, dae_status will determine if the subsystem terminated
due to the receipt of a signal. If it did, dae_status returns a value of 0, and writes
to standard output the number of the signal that terminated the subsystem. This
number is printed as an unsigned decimal number. If the status value indicates
the subsystem did not terminate due to the receipt of a signal, dae_status returns
a value of 1.

If the -s flag is specified, dae_status will determine if the subsystem stopped due
to the receipt of a signal. If it did, dae_status returns a value of 0, and writes to
standard output the number of the signal that stopped the subsystem. This
number is printed as an unsigned decimal number. If the status value indicates
the subsystem did not stop due to the receipt of a signal, dae_status returns a
value of 1. It is not expected that an SRC notification method will ever be
executed when a subsystem is stopped. The -s flag is included in dae_status to
allow the program to interpret any legitimate status value.
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If the -c flag is specified, dae_status will determine if the subsystem generated a
core file. If it did, dae_status returns a value of 0. If the status value indicates
the subsystem did not generate a core file, dae_status returns a value of 1.

NOTES

The examples in this man page assume that the SRC notification support
programs are installed in the /usr/lpp/ssp/bin directory. Refer to 11.3, “Building
and Shipping the SRC Notification Support Programs” on page 299 for
information about the install directory of the SRC notification support programs.

EXAMPLES

The dae_msg Korn shell script includes code similar to the following to interpret
the subsystem status value:

pathname=/usr/lpp/ssp/bin
subsystem=$1
subsys_status=$4

if value=$(${pathname}/dae_status -e ${subsys_status}); then

print -n ″Subsystem \″${subsystem}\″ terminated abnormally;″
print -n ″ subsystem exited with value ${value}.\n″

elif value=$(${pathname}/dae_status -k ${subsys_status}); then

print -n ″Subsystem \″${subsystem}\″ terminated abnormally;″
print -n ″ subsystem terminated by signal ${value}.\n″
if ${pathname}/dae_status -c ${subsys_status}; then

print ″Core file created.″
fi

elif value=$(${pathname}/dae_status -s ${subsys_status}); then

print ″Subsystem \″${subsystem}\″ stopped by signal ${value}.″

else

print -n ″Subsystem \″${subsystem}\″ terminated abnormally;″
print -n ″ cause unknown.″

fi

EXIT STATUS

See the DESCRIPTION section.

LOCATION

Refer to 11.3, “Building and Shipping the SRC Notification Support Programs” on
page 299 for information about the install directory of the SRC notification
support programs.
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RELATED INFORMATION

The following man page sections in this appendix are related:

B.1, “dae_notify(1)” on page 386
B.2, “dae_msg(1)” on page 390
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Appendix C. Loading the Diskette

A diskette is included with this redbook. The diskette includes:

• The text of all the figures in the redbook.

• The source code for the daemon support routines described in Chapter 10,
“Daemon Support Routines” on page 245.

• The source code for the programs described in Chapter 11, “SRC
Notification Support Programs” on page 295.

• The source code for a program that can be used as a model to build
commands that send subsystem-defined requests to SRC-controlled
daemons. The use of this program is described in Chapter 12, “New SRC
Program Support” on page 303.
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To load the contents of the diskette onto your system, follow these steps:

 1. Insert the diskette into a diskette drive; the /dev/rfd0 drive, for example.

 2. From a shell prompt, change the current working directory to the directory
where you want the diskette contents loaded. For example:

$ cd /u/myuserid/software

 3. List the contents of the diskette to verify the correct diskette is in the diskette
drive. For example:

$ tar -tf /dev/rfd0

dae/
dae/figures/
dae/figures/figure_001
dae/figures/figure_002
dae/figures/figure_003
dae/figures/figure_004

.

.

.
dae/figures/README
dae/src/
dae/src/SRC_notify/
dae/src/SRC_notify/makefile
dae/src/SRC_notify/README
dae/src/SRC_notify/dae_date.c
dae/src/SRC_notify/dae_status.c
dae/src/SRC_notify/dae_msg.sh
dae/src/SRC_notify/dae_finderr.sh
dae/src/SRC_notify/dae_notify.sh
dae/src/SRC_cmd_model/
dae/src/SRC_cmd_model/dae_SRCmodel.c
dae/src/SRC_cmd_model/README
dae/src/libdae_bsd/
dae/src/libdae_bsd/makefile
dae/src/libdae_bsd/make_lib
dae/src/libdae_bsd/README
dae/src/libdae/
dae/src/libdae/dae_error.c
dae/src/libdae/dae_SRCout.c
dae/src/libdae/dae_global.h
dae/src/libdae/dae_psalloc.c
dae/src/libdae/dae.h
dae/src/libdae/dae_SRC.c
dae/src/libdae/dae_err.h
dae/src/libdae/dae_excl.c
dae/src/libdae/dae_init.c
dae/src/libdae/dae_misc.c
dae/src/libdae/dae_std.h
dae/src/libdae/dae_getprocs.c
dae/src/libdae/makefile
dae/src/libdae/daeshr.exp
dae/src/libdae/make_lib
dae/src/libdae/README
dae/src/README
dae/README
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 4. Load the contents of the diskette into the current working directory. In the
following example, the -o flag causes the extracted files to be assigned the
user and group identifier of the user running the tar command:

$ tar -xvof /dev/rfd0

x dae
x dae/figures
x dae/figures/figure_001, 60 bytes, 1 tape blocks
x dae/figures/figure_002, 725 bytes, 2 tape blocks
x dae/figures/figure_003, 229 bytes, 1 tape blocks
x dae/figures/figure_004, 1547 bytes, 4 tape blocks

.

.

.
x dae/figures/README, 172 bytes, 1 tape blocks
x dae/src
x dae/src/SRC_notify
x dae/src/SRC_notify/makefile, 3521 bytes, 7 tape blocks
x dae/src/SRC_notify/README, 490 bytes, 1 tape blocks
x dae/src/SRC_notify/dae_date.c, 3713 bytes, 8 tape blocks
x dae/src/SRC_notify/dae_status.c, 6883 bytes, 14 tape blocks
x dae/src/SRC_notify/dae_msg.sh, 6927 bytes, 14 tape blocks
x dae/src/SRC_notify/dae_finderr.sh, 15756 bytes, 31 tape blocks
x dae/src/SRC_notify/dae_notify.sh, 6806 bytes, 14 tape blocks
x dae/src/SRC_cmd_model
x dae/src/SRC_cmd_model/dae_SRCmodel.c, 8284 bytes, 17 tape blocks
x dae/src/SRC_cmd_model/README, 407 bytes, 1 tape blocks
x dae/src/libdae_bsd
x dae/src/libdae_bsd/makefile, 1672 bytes, 4 tape blocks
x dae/src/libdae_bsd/make_lib, 438 bytes, 1 tape blocks
x dae/src/libdae_bsd/README, 666 bytes, 2 tape blocks
x dae/src/libdae
x dae/src/libdae/dae_error.c, 9022 bytes, 18 tape blocks
x dae/src/libdae/dae_SRCout.c, 70362 bytes, 138 tape blocks
x dae/src/libdae/dae_global.h, 13507 bytes, 27 tape blocks
x dae/src/libdae/dae_psalloc.c, 18989 bytes, 38 tape blocks
x dae/src/libdae/dae.h, 11566 bytes, 23 tape blocks
x dae/src/libdae/dae_SRC.c, 42698 bytes, 84 tape blocks
x dae/src/libdae/dae_err.h, 5251 bytes, 11 tape blocks
x dae/src/libdae/dae_excl.c, 8501 bytes, 17 tape blocks
x dae/src/libdae/dae_init.c, 61277 bytes, 120 tape blocks
x dae/src/libdae/dae_misc.c, 8887 bytes, 18 tape blocks
x dae/src/libdae/dae_std.h, 13776 bytes, 27 tape blocks
x dae/src/libdae/dae_getprocs.c, 10199 bytes, 20 tape blocks
x dae/src/libdae/makefile, 1577 bytes, 4 tape blocks
x dae/src/libdae/daeshr.exp, 369 bytes, 1 tape blocks
x dae/src/libdae/make_lib, 438 bytes, 1 tape blocks
x dae/src/libdae/README, 649 bytes, 2 tape blocks
x dae/src/README, 517 bytes, 2 tape blocks
x dae/README, 364 bytes, 1 tape blocks

 5. A subdirectory, dae, has been created in the current working directory. The
contents of the diskette have been copied into that subdirectory.

Appendix C. Loading the Diskette 397



398 Writing Reliable AIX Daemons 



Appendix D. Special Notices

This publication is intended to help administrators, program designers, and
daemon writers who need to originate or understand daemon logic. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by AIX (5765-393). See the
PUBLICATIONS section of the IBM Programming Announcement for AIX
(5765-393) for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
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Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

UNIX Network Programming, W. Richard Stevens, 1990, Prentice Hall, Englewood
Cliffs

Advanced Programming in the UNIX Environment, W. Richard Stevens, 1992,
Addison-Wesley Publishing Company

AIX Version 4.1: Files Reference, SC23-2512

AIX Version 4.1: General Programming Concepts: Writing and Debugging
Programs, SC23-2533

AIX Version 4.1: Command Reference, SBOF-1851

AIX Version 4.1: System Management Guide: Operating System and Devices,
SC23-2525

AIX Version 4.1: Technical Reference, Volumes 1: Base Operating System and
Extensions, SC23-2614

AIX Version 4.1: Technical Reference, Volume 2: Base Operating System and
Extensions, SC23-2615

X/Open CAE Specification, System Interfaces and Headers Issue 4, Version 2 ,
X/Open Company Ltd.

E.1 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription  and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RISC System/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RISC System/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection (available soon) SBOF-7250 SK2T-8042

  Copyright IBM Corp. 1996 401



402 Writing Reliable AIX Daemons 



How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER  — to order hardcopies in United States

• GOPHER link to the Internet  - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Home Page on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• ITSO4USA category on INEWS

• Online  — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.
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How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders  (Do not send credit card information over the Internet) — send orders to:

• Telephone orders

• Mail Orders  — send orders to:

• Fax  — send orders to:

• 1-800-IBM-4FAX (United States) or  (+1) 415 855 43 29 (Outside USA)  — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services  - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Home Page http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)
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IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

• Please put me on the mailing list for updated versions of the IBM Redbook Catalog.

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

•  Invoice to customer number 

•  Credit card number 

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.
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List of Abbreviations

ADE AIX 4.1 Development
Environment (internal
environment)

AIX advanced interactive
executive (IBM ′s flavor of
UNIX)

ANSI American National Standards
Institute

ASCII American National Standard
Code for Information
Interchange

AT&T American Telephone &
Telegraph Company

BSD Berkeley software distribution
(UC at Berkeley, UNIX)

C UNIX system-programming
language

CD-ROM (optically read) compact disk
- read only memory

FTP f i le transfer program

FTP f i le transfer protocol

I/O input/output

IBM International Business
Machines Corporation

Internet A worldwide network of
TCP/IP-based networks

IP internet protocol (ISO)

IP internetwork protocol (OSI)

IPC inter-processor
communication

ITSO International Technical
Support Organization

LPP l icensed program product

NFS network file system (USA,
Sun Microsystems Inc)

ODM object data manager (AIX)

PID process
identif ier/identif ication

POSIX portable operating system
interface for computer
environments, an IEEE
operating system standard,
closely related to the UNIX
system (software writing)

PSSP IBM Parallel System Support
Programs for AIX

PTF program temporary f ix

RISC reduced instruction set
computer/cycles

RS/6000 SP IBM RS/6000 Scalable
POWERparallel Systems

SRC system resource controller

TCP transmission control protocol
(USA, DoD)

TCP/IP Transmission Control
Protocol/Internet Protocol
(USA, DoD, ARPANET;
TCP=layer 4, IP=layer 3,
UNIX-ish/Ethernet-based
system-interconnect protocol)

TTY teletypewriter

UDP user datagram protocol (USA,
DoD)

UDP/IP User Datagram
Protocol/Internet Protocol
(USA, DoD, ARPANET;
TCP=layer 4, IP=layer 3,

UID user identification

UNIX an operating system
developed at Bell
Laboratories (trademark of
UNIX System Laboratories,
licensed exclusively by
X/Open Company, Ltd.)

URL Universal Resource Locator

X hexadecimal (as in 5Fx)

X/OPEN a group (Bull, DEC, Ericsson,
IBM, ICL, Olivetti, Philips,
Siemens-Nixdorf, Unisys) to
create a standard interface
between software packages
and UNIX (portability)
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Index

Special Characters
-c 392, 393
-e 392
-k 392
-l 390
-s 390, 392
_AIX 14, 251
_BSD 14, 36, 126, 286, 288
_DEBUG 251
_exit 392
_longjmp 158
_POSIX_JOB_CONTROL 15
_XOPEN_UNIX 15
_XOPEN_VERSION 15
/bin/env 223
/dev/.SRC-unix 69
/dev/console 63, 74
/dev/nul l 41, 86, 87, 319
/dev/t ty 28
/etc/environment 250, 252
/etc/group 72
/etc/hosts.equiv 62
/etc/inetd.conf 52, 56, 129, 130, 131, 133, 223
/etc/inittab 45, 46, 47, 221, 222, 231
/etc/passwd 72, 73
/etc/protocols 130
/etc/services 129, 130, 131, 133
/usr/include/spc.h 107
/usr/include/srcerrno.h 75, 78, 107
% characters 354, 357, 360, 364
% h i 304

A
abbreviations 407
abort 156
accept 103, 157, 175, 269
acronyms 407
Action 46, 63, 66, 67, 74, 76, 104, 105, 106, 121, 125
addssys 68
ADE 288, 299, 307, 313
AIX 1, 10, 19, 21, 30, 36, 39, 45, 84, 129, 131, 148,

157, 170, 175, 176, 203, 204, 216, 250, 292
AIX 3.2 345
AIX error log

See error log
ANSI C 9, 150, 183
arguments 5, 54
auditid 63

B
background 2, 25

background process group 29
Berkeley sockets 2, 20
bibl iography 401
bind 103, 157, 268
blocked signal 154
body area 355, 357, 358, 360, 361, 364, 365
boot 2, 3
BSD 9, 10, 16, 19, 20, 31, 33, 35, 49, 64, 148, 288, 292

C
C compiler 289, 290
cancel stop 52
cc 289, 290
chitab 47
chroot 156
chserver 133
chssys 62, 68, 72, 73, 76
close 164
cmdargs 63
COLLECTSTATS 275, 276, 305, 306, 308, 314
Command 45, 46
compil ing 126
concurrent server 3
CONFIGPATH 276, 305, 306, 308
configuration fi le 331
connect 157, 175
contact 64, 66, 67, 69
 control workstation 2, 84, 231
controll ing process 28
controll ing terminal 2, 4, 24, 25, 27, 28, 30, 31, 33,

39, 140, 220, 248, 250, 381
core file 4, 41, 393
ctermid 28

D
DAE_A_DONT_CARE 343, 344
DAE_A_EARLY 343, 345
DAE_A_EARLY_TRY 343, 344
DAE_A_LATE 343
DAE_A_LATE_TRY 343, 344
DAE_ARG 303, 305, 306, 307, 308, 309
DAE_ARG_NUMBER 303, 305, 308
DAE_ARG_STRING 303, 306, 308
dae_argv 343, 344
DAE_CMD 303, 305, 307, 308, 309
dae_date 300
dae_date_IDIR 300
DAE_DEBUG 382
DAE_E_AINVALID 319
DAE_E_CHDIR 319
DAE_E_CHILD 319
DAE_E_CLOSE 319
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DAE_E_DEVNULL 319
DAE_E_EXCLBUSY 320
DAE_E_EXCLERROR 320
DAE_E_EXLINVALID 319
DAE_E_NOPSALLOC 319, 344
DAE_E_NOTAGAIN 319
DAE_E_OK 319
DAE_E_PERROR 319
DAE_E_PINVALID 319
DAE_E_PWRONG 319
DAE_E_SESSION 319
DAE_E_SETPSALLOC 319
DAE_E_SIGNAL 319
DAE_E_SRCPREP 319
dae_err_detail 317
dae_error_printf 246, 276, 329, 330, 331, 333, 349,

375, 377
dae_error_puts 246, 269, 276, 329, 330, 331, 333,

349, 374, 375, 378
dae_excl_ID 346, 347
dae_excl_path 346, 347
dae_filename 381
dae_finderr 300
dae_finderr_IDIR 300
dae_fmt 357, 364, 371, 377
dae_fopen 247, 381
dae_inform_printf 246, 276, 329, 330, 331, 332, 333,

369, 371, 372
dae_inform_puts 246, 276, 329, 330, 331, 332, 333,

368, 372
dae_init 37, 235, 237, 245, 247, 250, 252, 258, 267,

268, 276, 284, 286, 316, 343, 346, 380
dae_init_exclusive 235, 246, 276, 278, 283, 319, 346,

347
dae_init_lowps 245, 279, 281, 318, 340, 341, 344
dae_init_prevent_zombies 245, 268, 318, 338
dae_init_psalloc 246, 253, 317, 341, 342, 343, 344,

345
dae_init_SRC_msq 245, 254, 258, 259, 272, 318, 319,

325, 349, 351, 354, 357, 361, 365, 368, 371, 374, 377
dae_init_SRC_sig 245, 251, 253, 318, 321
dae_init_SRC_sock 245, 267, 268, 269, 272, 318, 319,

326, 328, 351, 354, 357, 361, 365, 368, 371, 374, 377
dae_init_term_sig 245, 249, 318, 336
DAE_LONG 303, 305, 307, 308, 309
dae_long_status 326, 332, 351, 354, 357, 361, 365,

368, 371, 374, 377
dae_lowps 340
DAE_M_STOP 247, 382
dae_margin_printf 246, 332, 355, 356, 358, 359, 361,

364, 365, 369, 372
dae_margin_puts 246, 332, 355, 358, 359, 360, 361,

365, 369, 372
dae_mode 381
dae_msg 126, 295, 297, 298, 300, 387, 388, 390, 392,

393
dae_msg_IDIR 300

dae_msqid 319, 325
dae_msqkey 325
dae_msqtype 325
dae_newSRCreqs.h 303, 305, 307, 309, 314
dae_notify 126, 295, 300, 386, 391
dae_notify_IDIR 300
dae_other_req 255, 272, 326, 333, 368, 371, 374, 377
DAE_P_INETD 316, 338, 340, 342, 346
DAE_P_OTHER 251, 316, 338, 340, 342, 346
DAE_P_SRC 258, 268, 316, 338, 340, 342, 346
dae_parent 316, 317, 338, 340, 342, 346
dae_process_is_the_daemon 247, 269, 286, 380
dae_prog_path 344
dae_prog_pathing 343
dae_ps_policy 342, 343, 344
dae_refresh 255, 326, 331, 368, 371, 374, 377
dae_req_msq 272
dae_req_sock 272
dae_request 333
dae_restart 323, 326, 333, 336, 338, 340
dae_sig_stop_forced 322, 323, 324
dae_sig_stop_normal 321, 322, 323, 324
dae_SRC_req 246, 259, 268, 269, 272, 326, 334, 349,

368, 371, 374, 377
dae_SRC_rtns 322, 326, 329, 351, 354, 357, 361, 365,

368, 371, 374, 377
dae_SRC_sockd 319, 328
DAE_SRC_SUPPORT 15
dae_SRCmodel.c 303, 304, 305, 307, 308, 309, 313
dae_status 300, 387, 392
dae_status_IDIR 300
dae_status_printf 246, 259, 269, 270, 332, 355, 357,

358, 359, 361, 365, 369, 372
dae_status_puts 246, 259, 269, 270, 332, 354, 355,

358, 361, 365, 369, 372
dae_status_short 246, 270, 332, 351
dae_stop_cancel 322, 323, 326, 330
dae_stop_forced 322, 326, 329
dae_stop_normal 322, 326, 329
dae_str 354, 356, 360, 363, 368, 370, 374, 376
dae_term_rtn 336
dae_term_rtning 336
dae_trace_begin 255, 326, 330, 368, 371, 374, 377
dae_trace_end 255, 326, 331, 368, 371, 374, 377
dae_width 360, 364
dae.h 247
daemon support routines 5, 84, 126, 245, 286, 315,

365
datagram socket 130
dbx detach 382
debugging 382
defssys 68
delivered signal 154
delssys 68
disassociate 25, 30, 33
disclaim 207, 210, 211, 213, 340
diskette 395
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display 64

E
early paging space allocation policy 203, 204, 211,

215, 216, 217, 219, 221, 222, 223, 225, 229, 343, 345
egrep 56
end tracing 66
environment variables 54
EOF 356, 363, 370, 376
errno 20, 28, 31, 39, 171, 175, 176, 181, 184, 259, 352,

356, 359, 363, 367, 370, 373, 376, 379
error log 4, 73, 75, 77, 285, 295, 387, 388, 390
errpt 75, 387
exclusivity 5, 231, 234, 246, 276, 346
exec 1, 25, 65, 139, 149, 215, 216, 219, 221, 224, 225,

344
execv 228
exit 156, 237, 243
exit status 4

F
F_CLOSEM 40
fast system call 170
fcntl 40, 234, 235
fgets 178
file descriptor 20, 39, 41, 65, 88, 92, 130, 192, 248,

251, 267, 268, 328, 375, 378
file locking 234
fopen 31, 247, 381
forced stop 52
foreground process group 29
fork 25, 317
fprintf 160, 162, 164, 166
fputs 178, 259, 269, 354
free 157, 158, 213
ftok 64, 235, 236, 242, 243, 276, 346, 347
ftp 56, 58

G
gated 84
generated signal 154
generic SRC notification method 386
get_process_flags 228
getpgrp 27
getppid 20
getprocs 21, 86
getsockname 20, 88, 89, 115
getssys 68
gid 313
group name 303
group_name 386, 387, 390
grpname 65

H
high-speed switch 2
host 303
HUP 129

I
IBM Parallel System Support Programs for AIX 2
Identif ier 45
IDIR 300, 308, 309
IEEE 9
inetd 3, 19, 20, 39, 41, 49, 51, 54, 60, 67, 89, 129, 137,

149, 231, 233, 245, 247, 248, 283
Inetd Controlled Daemons 7
inetserv 131
init 2, 4, 19, 20, 41, 45, 46, 48, 87, 149, 231, 245, 251,

252
Internet Superserver 3
interrupt character 29
INTR 29
ioctl 31, 35, 174
IPC routines 174
IPC_NOWAIT 121
IPC_NOWAIT flag 237
iterat ive server 3

J
job control shell 29, 30, 31

K
kill 3, 4, 129, 232
Korn shell 27, 29, 30, 221, 297, 393

L
late paging space allocation policy 203, 215, 216,

218, 225, 228, 343
linking 126, 286
listen 103, 157, 268
loading the diskette 395
log_seqno 387, 390
login shell 25, 29
long status 51, 65, 103, 111, 255, 259, 260, 268, 269,

270, 351, 352, 354, 355, 357, 358, 360, 361, 363, 364,
365, 368, 370, 371, 373, 374, 377, 379

long tracing 330, 372
longjmp 149, 156, 158
lseek 164
lsitab 47
lssrc 50, 51, 53, 64, 74, 81, 82, 103, 110, 134, 135,

137, 223, 297, 332, 354, 357, 361, 365, 377

M
mail 297
make 288, 300, 307, 309
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MAKEFILE_DEPENDENCY 300
malloc 157, 158, 166
man pages 315, 317
margin 355, 358, 360, 361, 364, 365
message queue 115, 120, 126
migrate 25, 31, 86
mkitab 47
mknotify 81, 296
mkserver 133
mkssys 62, 63, 64, 65, 66, 67, 68, 83, 221, 260, 270
mode 313
modem disconnect 30
monitoring free paging space 204
MSG_NOERROR 121
msgget 90, 115, 120, 258
msgrcv 64, 115, 121
msgxrcv 64
MSQ_KEY 120
mtype 115, 121
mult i 64, 66, 67
mult i- thread 126, 199, 292
MVS 9

N
netstat 139
network programming 1
new SRC program model 303
new SRC program support 303
NFS 234, 235
nice 64
node 2
normal stop 52
NOSTATS 275, 276, 305, 306, 308, 314
notif ication method 4
notify_rc 388
notifymethod 80
notifyname 80
nowait 130

O
object 104, 106, 108
Object Data Manager 47
objname 107, 108
objtype 107, 108
ODM 47, 62, 124, 131
odmget 62, 66, 69, 72, 73, 232, 296
odmshow 62, 132
open 181
Open Edition 9

P
paging 38
paging space allocation 203
paging space allocation policy 279
paging-space kill threshold 203, 204, 251

paging-space warning threshold 203, 204
path 63
pause 174
pending signal 154
PID 20, 22, 27, 28, 34, 36, 50, 51, 74, 137, 232, 237,

303
pipes 172
poll ing 187
portabi l i ty 9, 14
POSIX 9, 15, 16, 27, 39, 146, 149, 156, 157, 158, 199,

292
printf 174, 199, 200, 246, 259, 269, 270, 357, 364, 371,

377
prior i ty 5, 64
process group 27
process group leader 27, 28, 139
process signal mask 158, 190
program unique make fi le 308, 309
PROGRAMS 308
ProtocolName 130
PSALLOC 215, 218, 219, 221, 224, 225, 228, 343
PSALLOC=ear ly 215, 217, 218, 222, 223, 224, 343
PSALLOC=late 343
psdanger 204
PSSP 2
puts 246, 354, 360, 368, 374

Q
qdaemon 51
QUIT 29
quit character 29

R
read 164, 170, 171, 172, 174, 176
recv 175
recvfrom 115, 175
refresh 56, 66, 109, 129, 131, 134, 303, 331, 368, 370,

371, 373, 374, 377, 379
restartable system calls 175, 333, 336, 340
rmitab 47
rmserver 133
rmssys 62, 68
root 45, 63, 68, 69, 121, 122, 130, 297, 313, 391
routed 84
 RS/6000 SP 2
RS/6000 SP node 2
RS/6000 SP partition 2, 235, 347
rtnmsg 109
RunLevel 45

S
sa_mask 154
SA_RESTART 176, 212
scanf 174
SCHAR_MAX 150

412 Writing Reliable AIX Daemons 



select 92, 103, 115, 120, 157, 186, 187, 189, 190, 191,
259, 268, 334, 349

SEM_UNDO 237
semaphore 235, 237, 242, 243, 276
semctl 243
semget 236
semop 237
send 175
sendmsg 175
sendto 175
separator column 355, 358, 361, 365
ServerArgs 130
ServerPath 130
ServiceName 130
session 28
session leader 28, 30, 31, 35, 139, 248, 250, 381
set-group-ID 313
setjmp 149, 158
setpgid 27
setpgrp 34
setsid 28, 30, 31, 34, 139, 140
setsockopt 103, 109, 268, 269, 375, 378
SEXECED 217, 225, 228
short status 51, 69, 103, 111, 259, 269, 270, 351, 352
short tracing 330, 372
sig_atomic_t 149, 150, 189
sigaction 145, 146, 149, 154, 176, 336
sigaddset 146, 149
sigblock 146, 148
SIGCHLD 36, 73, 318, 338
SIGCONT 29, 382
SIGDANGER 36, 38, 203, 204, 212, 214, 229, 248, 251,

281, 340, 344
sigdelset 146, 149
sigemptyset 146, 149
sigfil lset 146, 149
sigforce 64, 65, 66
sighold 146, 148, 149
SIGHUP 3, 25, 30, 131, 181, 248, 250, 317
sigignore 146, 148
SIGINT 25, 29, 248, 250, 317
sigismember 146, 149
SIGKILL 48, 52, 65, 66, 67, 186, 204, 243, 323, 330
siglongjmp 158, 189, 190, 191
signal handler 3
signal handling 141
signal pipe 191, 192
signal pipe 191
signal routine 141
signal-safe routines 156, 192
signorm 64, 65, 66
sigpause 146, 148
sigpending 146, 149
SIGPIPE 36, 37, 318
sigprocmask 146, 149, 151, 154, 162
SIGQUIT 25, 29, 248, 250, 317
sigrelse 146, 148

sigset 146, 148, 149
sigsetjmp 189, 190, 191
sigsetmask 146, 148
sigsuspend 146, 149
SIGTERM 3, 48, 65, 66, 67, 74, 91, 102, 106, 184, 186,

237, 243, 248, 249, 251, 259, 269, 318, 321, 323, 324,
326, 330, 333, 336

sigthreadmask 199
SIGTSTP 25, 29, 248, 250, 317
SIGTTIN 25, 29, 248, 250, 317
SIGTTOU 25, 29, 248, 250, 317
SIGUSR1 66, 90, 141, 143, 146, 154, 158, 160, 162,

166, 168, 176, 178, 181, 199, 253, 297
SIGUSR2 66, 90, 154, 166, 168, 176, 253
sigvec 146, 148, 149
sigwait 199
slow system call 170
SO_DEBUG 59, 109, 137, 139, 269, 378
SO_REUSEADDR 103, 268
socket 103, 115, 157, 268
SocketType 130
SP system 68
spc.h 110, 115
SPSEARLYALLOC 216, 217, 225, 228
SRC 4, 19, 20, 21, 39, 41, 45, 47, 49, 102, 129, 132,

231, 232, 245, 250, 251, 268, 270, 283, 286, 288, 334,
370, 377

SRC commands 134
SRC Controlled Daemons 6
SRC notification method 80, 81, 83, 126
SRC notification support programs 295, 299
SRC return code 107
SRC_NOSUPPORT 111
SRC_notify 300
SRC_rtns 272
SRCBYQUEUE 104, 115, 120
srchdr 104, 106, 107, 110, 111, 112, 113, 121
srcmstr 21, 22, 45, 46, 49, 51, 52, 57, 61, 63, 64, 65,

66, 67, 73, 74, 76, 80, 81, 82, 102, 103, 133, 149, 231,
232, 297, 317, 319, 347, 351, 386

SRCnotify 80, 126, 296, 298, 386
SRCPKTMAX 112
srcrep 107
srcreq 104, 105, 115, 121
srcrrqs 106, 108, 121
srcsrpy 69, 73, 108, 109, 111, 112
srcsrqt 126
SRCsubsvr 132
SRCsubsys 62
standard error 4
standard I/O routines 1
standard input 4
standard output 4
standerr 63
standin 63
standout 63
start tracing 66
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startsrc 46, 54, 84, 134, 135, 218, 297
statcode 110, 111
statrep 110, 111, 113
stop cancel 65, 66, 90, 102, 106, 253, 254, 259, 268,

269, 321, 323, 330, 333
stop forced 64, 65, 74, 90, 106, 251, 253, 260, 268,

269, 322, 323
stop normal 64, 65, 66, 74, 90, 106, 251, 253, 254,

259, 267, 268, 321, 322, 323
stopsrc 52, 53, 65, 73, 82, 123, 134, 135, 322, 323,

329, 330
stream socket 130
stream sockets 172
stty 29
sub_code 133
sub_type 133
SUBDIRS 313
subreq 104, 121, 125, 126, 304
subserver 49, 111, 132, 133
subserver stop normal 135
subsys_name 386, 387, 390
subsys_status 387, 390, 392
subsysname 63, 133
subsystem 49, 137
subsystem groups 83
subsystem name 303
subsystem user ID 68
subsystem-defined request 7, 106, 125, 126, 246,

255, 271, 272, 273, 276, 303, 304, 305, 314, 368, 370,
371, 373, 374, 376, 377, 379

SUSP 29
suspend character 29
svrkey 64, 66
svrmtype 64
svrreply 107, 108, 109
swcons 74
synonym 63
sys/proc.h 216
sys/wait.h 76
sysconf 39
syslogd 58
syspath 386
system group 45, 69, 72, 73, 122, 313
system log 285
System Resource Controller 4

See also SRC
system run level 45, 48
System V 9, 10, 19, 33, 35, 36, 49, 64, 148, 176
System V message queues 2
System V semaphores 234, 235, 346

T
tcgetpgrp 29
tcp 130
TCP trace records 59, 137, 139
TCP/IP 2, 3, 46, 129
tcpip 84

tcsetpgrp 29
telinit 48
telnet 53, 133, 136, 137, 139
telnetd 130
terminal-generated signals 23
TIOCNOTTY 31, 35
trace off 368, 370, 371, 373, 374, 377, 379
trace on 368, 370, 371, 373, 374, 377, 379
tracesoff 58, 59, 134, 303, 331
traceson 58, 59, 73, 134, 303, 330
trpt 61, 137, 139
type 313

U
udp 130
UDP/IP 2, 3, 62, 129
uid 63, 69, 73, 300, 313
umask 43
user ID 5
UserName 130
usrpath 386

V
vi editor 56
volati le 150

W
wait 36, 130, 171, 174, 181, 231
Wait/NoWait 130, 231
waitpid 36, 338
wait t ime 63, 65, 66, 67, 73, 82
working directory 41
wri te 164, 170, 171, 174, 176, 181

X
X/Open 9, 16, 157, 158, 292
XPG4 176

Z
zombie 36, 248, 250, 338
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